我徹底服了,大牛講解訊號與系統(通俗易懂)
我徹底服了,大牛講解訊號與系統(通俗易懂) | 貿澤工程師社群 http://mouser.eetrend.com/content/2018/100011813.html
引子
很多朋友和我一樣,工科電子類專業,學了一堆訊號方面的課,什麼都沒學懂,背了公式考了試,然後畢業了。
先說"卷積有什麼用"這個問題。(有人搶答,"卷積"是為了學習"訊號與系統"這門課的後續章節而存在的。我大吼一聲,把他拖出去槍斃!)
講一個故事:
張三剛剛應聘到了一個電子產品公司做測試人員,他沒有學過"訊號與系統"這門課程。一天,他拿到了一個產品,開發人員告訴他,產品有一個輸入端,有一個輸出端,有限的輸入訊號只會產生有限的輸出。
然後,經理讓張三測試當輸入sin(t)(t<1秒)訊號的時候(有訊號發生器),該產品輸出什麼樣的波形。張三照做了,花了一個波形圖。
"很好!"經理說。然後經理給了張三一疊A4紙:"這裡有幾千種訊號,都用公式說明了,輸入訊號的持續時間也是確定的。你分別測試以下我們產品的輸出波形是什麼吧!"
這下張三懵了,他在心理想"上帝,幫幫我把,我怎麼畫出這些波形圖呢?"
於是上帝出現了:"張三,你只要做一次測試,就能用數學的方法,畫出所有輸入波形對應的輸出波形"。
上帝接著說:"給產品一個脈衝訊號,能量是1焦耳,輸出的波形圖畫出來!"
張三照辦了,"然後呢?"
上帝又說,"對於某個輸入波形,你想象把它微分成無數個小的脈衝,輸入給產品,疊加出來的結果就是你的輸出波形。你可以想象這些小脈衝排著隊進入你的產品,每個產生一個小的輸出,你畫出時序圖的時候,輸入訊號的波形好像是反過來進入系統的。"
張三領悟了:"哦,輸出的結果就積分出來啦!感謝上帝。這個方法叫什麼名字呢?"
上帝說:"叫卷積!"
從此,張三的工作輕鬆多了。每次經理讓他測試一些訊號的輸出結果,張三都只需要在A4紙上做微積分就是提交任務了!
--------------------------------------------------------------------------------
張三愉快地工作著,直到有一天,平靜的生活被打破。
經理拿來了一個小的電子裝置,接到示波器上面,對張三說:"看,這個小裝置產生的波形根本沒法用一個簡單的函式來說明,而且,它連續不斷的發出訊號!不過幸好,這個連續訊號是每隔一段時間就重複一次的。張三,你來測試以下,連到我們的裝置上,會產生什麼輸出波形!"
張三擺擺手:"輸入訊號是無限時長的,難道我要測試無限長的時間才能得到一個穩定的,重複的波形輸出嗎?"
經理怒了:"反正你給我搞定,否則炒魷魚!"
張三心想:"這次輸入訊號連公式都給出出來,一個很混亂的波形;時間又是無限長的,卷積也不行了,怎麼辦呢?"
及時地,上帝又出現了:"把混亂的時間域訊號對映到另外一個數學域上面,計算完成以後再映射回來"
"宇宙的每一個原子都在旋轉和震盪,你可以把時間訊號看成若干個震盪疊加的效果,也就是若干個可以確定的,有固定頻率特性的東西。"
"我給你一個數學函式f,時間域無限的輸入訊號在f域有限的。時間域波形混亂的輸入訊號在f域是整齊的容易看清楚的。這樣你就可以計算了"
"同時,時間域的卷積在f域是簡單的相乘關係,我可以證明給你看看"
"計算完有限的程式以後,取f(-1)反變換回時間域,你就得到了一個輸出波形,剩下的就是你的數學計算了!"
張三謝過了上帝,保住了他的工作。後來他知道了,f域的變換有一個名字,叫做傅利葉,什麼什麼......
----------------------------------------
再後來,公司開發了一種新的電子產品,輸出訊號是無限時間長度的。這次,張三開始學拉普拉斯了......
後記:
不是我們學的不好,是因為教材不好,老師講的也不好。
很欣賞Google的面試題:用3句話像老太太講清楚什麼是資料庫。這樣的命題非常好,因為沒有深入的理解一個命題,沒有仔細的思考一個東西的設計哲學,我們就會陷入細節的泥沼:背公式,數學推導,積分,做題;而沒有時間來回答"為什麼要這樣"。做大學老師的做不到"把厚書讀薄"這一點,講不出哲學層面的道理,一味背書和翻講ppt,做著枯燥的數學證明,然後責怪"現在的學生一代不如一代",有什麼意義嗎?
第二課到底什麼是頻率什麼是系統?
這一篇,我展開的說一下傅立葉變換F。注意,傅立葉變換的名字F可以表示頻率的概念(freqence),也可以包括其他任何概念,因為它只是一個概念模型,為了解決計算的問題而構造出來的(例如時域無限長的輸入訊號,怎麼得到輸出訊號)。我們把傅立葉變換看一個C語言的函式,訊號的輸出輸出問題看為IO的問題,然後任何難以求解的x->y的問題都可以用x->f(x)->f-1(x)->y來得到。
1、到底什麼是頻率?
一個基本的假設:任何資訊都具有頻率方面的特性,音訊訊號的聲音高低,光的頻譜,電子震盪的週期,等等,我們抽象出一個件諧振動的概念,數學名稱就叫做頻率。想象在x-y平面上有一個原子圍繞原點做半徑為1勻速圓周運動,把x軸想象成時間,那麼該圓周運動在y軸上的投影就是一個sin(t)的波形。相信中學生都能理解這個。
那麼,不同的頻率模型其實就對應了不同的圓周運動速度。圓周運動的速度越快,sin(t)的波形越窄。頻率的縮放有兩種模式:
(a)老式的收音機都是用磁帶作為音樂介質的,當我們快放的時候,我們會感覺歌唱的聲音變得怪怪的,調子很高,那是因為"圓周運動"的速度增倍了,每一個聲音分量的sin(t)輸出變成了sin(nt)。
(b)在CD/計算機上面快放或滿放感覺歌手快唱或者慢唱,不會出現音調變高的現象:因為快放的時候採用了時域取樣的方法,丟棄了一些波形,但是承載了資訊的輸出波形不會有寬窄的變化;滿放時相反,時域訊號填充拉長就可以了。
2、F變換得到的結果有負數/複數部分,有什麼物理意義嗎?
解釋:F變換是個數學工具,不具有直接的物理意義,負數/複數的存在只是為了計算的完整性。
3、訊號與系統這們課的基本主旨是什麼?
對於通訊和電子類的學生來說,很多情況下我們的工作是設計或者OSI七層模型當中的物理層技術,這種技術的複雜性首先在於你必須確立傳輸介質的電氣特性,通常不同傳輸介質對於不同頻率段的訊號有不同的處理能力。乙太網線處理基帶訊號,廣域網光線傳出高頻調製訊號,行動通訊,2G和3G分別需要有不同的載頻特性。那麼這些介質(空氣,電線,光纖等)對於某種頻率的輸入是否能夠在傳輸了一定的距離之後得到基本不變的輸入呢?那麼我們就要建立介質的頻率相應數學模型。同時,知道了介質的頻率特性,如何設計在它上面傳輸的訊號才能大到理論上的最大傳輸速率?----這就是訊號與系統這們課帶領我們進入的一個世界。
當然,訊號與系統的應用不止這些,和夏農的資訊理論掛鉤,它還可以用於資訊處理(聲音,影象),模式識別,智慧控制等領域。如果說,計算機專業的課程是資料表達的邏輯模型,那麼訊號與系統建立的就是更底層的,代表了某種物理意義的數學模型。資料結構的知識能解決邏輯資訊的編碼和糾錯,而訊號的知識能幫我們設計出碼流的物理載體(如果接受到的訊號波形是混亂的,那我依據什麼來判斷這個是1還是0?邏輯上的糾錯就失去了意義)。在工業控制領域,計算機的應用前提是各種數模轉換,那麼各種物理現象產生的連續模擬訊號(溫度,電阻,大小,壓力,速度等)如何被一個特定裝置轉換為有意義的數字訊號,首先我們就要設計一個可用的數學轉換模型。
4、如何設計系統?
設計物理上的系統函式(連續的或離散的狀態),有輸入,有輸出,而中間的處理過程和具體的物理實現相關,不是這們課關心的重點(電子電路設計?)。訊號與系統歸根到底就是為了特定的需求來設計一個系統函式。設計出系統函式的前提是把輸入和輸出都用函式來表示(例如sin(t))。分析的方法就是把一個複雜的訊號分解為若干個簡單的訊號累加,具體的過程就是一大堆微積分的東西,具體的數**算不是這門課的中心思想。
那麼系統有那些種類呢?
(a)按功能分類:調製解調(訊號抽樣和重構),疊加,濾波,功放,相位調整,訊號時鐘同步,負反饋鎖相環,以及若干子系統組成的一個更為複雜的系統----你可以畫出系統流程圖,是不是很接近編寫程式的邏輯流程圖?確實在符號的空間裡它們沒有區別。還有就是離散狀態的數字訊號處理(後續課程)。
(b)按系統類別劃分,無狀態系統,有限狀態機,線性系統等。而物理層的連續系統函式,是一種複雜的線性系統。
5、最好的教材?
符號系統的核心是集合論,不是微積分,沒有集合論構造出來的系統,實現用到的微積分便毫無意義----你甚至不知道運算了半天到底是要作什麼。以計算機的觀點來學習訊號與系統,最好的教材之一就是<<StructureandInterpretationofSignalsandSystems>>,作者是UCBerkeley的EdwardA.LeeandPravinVaraiya----先定義再實現,符合人類的思維習慣。國內的教材通篇都是數學推導,就是不肯說這些推導是為了什麼目的來做的,用來得到什麼,建設什麼,防止什麼;不去從認識論和需求上討論,通篇都是看不出目的的方**,本末倒置了。
第三課抽樣定理是幹什麼的
1.舉個例子,打電話的時候,電話機發出的訊號是PAM脈衝調幅,在電話線路上傳的不是話音,而是話音通過通道編碼轉換後的脈衝序列,在收端恢復語音波形。那麼對於連續的說話人語音訊號,如何轉化成為一些列脈衝才能保證基本不失真,可以傳輸呢?很明顯,我們想到的就是取樣,每隔M毫秒對話音取樣一次看看電訊號振幅,把振幅轉換為脈衝編碼,傳輸出去,在收端按某種規則重新生成語言。
那麼,問題來了,每M毫秒取樣一次,M多小是足夠的?在收端怎麼才能恢復語言波形呢?
對於第一個問題,我們考慮,語音訊號是個時間頻率訊號(所以對應的F變換就表示時間頻率)把語音訊號分解為若干個不同頻率的單音混合體(周期函式的複利葉級數展開,非週期的區間函式,可以看成補齊以後的週期訊號展開,效果一樣),對於最高頻率的訊號分量,如果抽樣方式能否保證恢復這個分量,那麼其他的低頻率分量也就能通過抽樣的方式使得資訊得以儲存。如果人的聲音高頻限制在3000Hz,那麼高頻分量我們看成sin(3000t),這個sin函式要通過抽樣儲存資訊,可以看為:對於一個週期,波峰取樣一次,波谷取樣一次,也就是取樣頻率是最高頻率分量的2倍(奈奎斯特抽樣定理),我們就可以通過取樣訊號無損的表示原始的模擬連續訊號。這兩個訊號一一對應,互相等價。
對於第二個問題,在收端,怎麼從脈衝序列(梳裝波形)恢復模擬的連續訊號呢?首先,我們已經肯定了在頻率域上面的脈衝序列已經包含了全部資訊,但是原始資訊只在某一個頻率以下存在,怎麼做?我們讓輸入脈衝訊號I通過一個裝置X,輸出訊號為原始的語音O,那麼I(*)X=O,這裡(*)表示卷積。時域的特性不好分析,那麼在頻率域F(I)*F(X)=F(O)相乘關係,這下就很明顯了,只要F(X)是一個理想的,低通濾波器就可以了(在F域畫出來就是一個方框),它在時間域是一個鐘型函式(由於包含時間軸的負數部分,所以實際中不存在),做出這樣的一個訊號處理裝置,我們就可以通過輸入的脈衝序列得到幾乎理想的原始的語音。在實際應用中,我們的抽樣頻率通常是奈奎斯特頻率再多一點,3k赫茲的語音訊號,抽樣標準是8k赫茲。
2.再舉一個例子,對於數字影象,抽樣定理對應於圖片的解析度----抽樣密度越大,圖片的解析度越高,也就越清晰。如果我們的抽樣頻率不夠,資訊就會發生混疊----網上有一幅圖片,近視眼戴眼鏡看到的是愛因斯坦,摘掉眼睛看到的是夢露----因為不帶眼睛,解析度不夠(抽樣頻率太低),高頻分量失真被混入了低頻分量,才造成了一個視覺陷阱。在這裡,影象的F變化,對應的是空間頻率。
話說回來了,直接在通道上傳原始語音訊號不好嗎?模擬訊號沒有抗干擾能力,沒有糾錯能力,抽樣得到的訊號,有了數字特性,傳輸效能更佳。
什麼訊號不能理想抽樣?時域有跳變,頻域無窮寬,例如方波訊號。如果用有限頻寬的抽樣訊號表示它,相當於複利葉級數取了部分和,而這個部分和在恢復原始訊號的時候,在不可導的點上面會有毛刺,也叫吉布斯現象。
3.為什麼傅立葉想出了這麼一個級數來?這個源於西方哲學和科學的基本思想:正交分析方法。例如研究一個立體形狀,我們使用x,y,z三個互相正交的軸:任何一個軸在其他軸上面的投影都是0。這樣的話,一個物體的3檢視就可以完全表達它的形狀。同理,訊號怎麼分解和分析呢?用互相正交的三角函式分量的無限和:這就是傅立葉的貢獻。
入門第四課傅立葉變換的複數小波
說的廣義一點,"複數"是一個"概念",不是一種客觀存在。
什麼是"概念"?一張紙有幾個面?兩個,這裡"面"是一個概念,一個主觀對客觀存在的認知,就像"大"和"小"的概念一樣,只對人的意識有意義,對客觀存在本身沒有意義(康德:純粹理性的批判)。把紙條的兩邊轉一下相連線,變成"莫比烏斯圈",這個紙條就只剩下一個"面"了。概念是對客觀世界的加工,反映到意識中的東西。
數的概念是這樣被推廣的:什麼數x使得x^2=-1?實數軸顯然不行,(-1)*(-1)=1。那麼如果存在一個抽象空間,它既包括真實世界的實數,也能包括想象出來的x^2=-1,那麼我們稱這個想象空間為"複數域"。那麼實數的運演算法則就是複數域的一個特例。為什麼1*(-1)=-1?+-符號在複數域裡面代表方向,-1就是"向後,轉!"這樣的命令,一個1在圓周運動180度以後變成了-1,這裡,直線的數軸和圓周旋轉,在複數的空間裡面被統一了。
因此,(-1)*(-1)=1可以解釋為"向後轉"+"向後轉"=回到原地。那麼複數域如何表示x^2=-1呢?很簡單,"向左轉","向左轉"兩次相當於"向後轉"。由於單軸的實數域(直線)不包含這樣的元素,所以複數域必須由兩個正交的數軸表示--平面。很明顯,我們可以得到複數域乘法的一個特性,就是結果的絕對值為兩個複數絕對值相乘,旋轉的角度=兩個複數的旋轉角度相加。高中時代我們就學習了迪莫弗定理。為什麼有這樣的乘法性質?不是因為複數域恰好具有這樣的乘法性質(性質決定認識),而是發明複數域的人就是根據這樣的需求去弄出了這麼一個複數域(認識決定性質),是一種主觀唯心主義的研究方法。為了構造x^2=-1,我們必須考慮把乘法看為兩個元素構成的集合:乘積和角度旋轉。
因為三角函式可以看為圓周運動的一種投影,所以,在複數域,三角函式和乘法運算(指數)被統一了。我們從實數域的傅立葉級數展開入手,立刻可以得到形式更簡單的,複數域的,和實數域一一對應的傅立葉複數級數。因為複數域形式簡單,所以研究起來方便----雖然自然界不存在複數,但是由於和實數域的級數一一對應,我們做個反對映就能得到有物理意義的結果。
那麼傅立葉變換,那個令人難以理解的轉換公式是什麼含義呢?我們可以看一下它和複數域傅立葉級數的關係。什麼是微積分,就是先微分,再積分,傅立葉級數已經作了無限微分了,對應無數個離散的頻率分量衝擊訊號的和。傅立葉變換要解決非週期訊號的分析問題,想象這個非週期訊號也是一個週期訊號:只是週期為無窮大,各頻率分量無窮小而已(否則積分的結果就是無窮)。那麼我們看到傅立葉級數,每個分量常數的求解過程,積分的區間就是從T變成了正負無窮大。而由於每個頻率分量的常數無窮小,那麼讓每個分量都去除以f,就得到有值的數----所以周期函式的傅立葉變換對應一堆脈衝函式。同理,各個頻率分量之間無限的接近,因為f很小,級數中的f,2f,3f之間幾乎是挨著的,最後捱到了一起,和卷積一樣,這個複數頻率空間的級數求和最終可以變成一個積分式:傅立葉級數變成了傅立葉變換。注意有個概念的變化:離散的頻率,每個頻率都有一個"權"值,而連續的F域,每個頻率的加權值都是無窮小(面積=0),只有一個頻率範圍內的"頻譜"才對應一定的能量積分。頻率點變成了頻譜的線。
因此傅立葉變換求出來的是一個通常是一個連續函式,是複數頻率域上面的可以畫出影象的東西?那個根號2Pai又是什麼?它只是為了保證正變換反變換回來以後,訊號不變。我們可以讓正變換除以2,讓反變換除以Pi,怎麼都行。慢點,怎麼有"負數"的部分,還是那句話,是數軸的方向對應複數軸的旋轉,或者對應三角函式的相位分量,這樣說就很好理解了。有什麼好處?我們忽略相位,只研究"振幅"因素,就能看到實數頻率域內的頻率特性了。
我們從實數(三角函式分解)->複數(e和Pi)->複數變換(F)->複數反變換(F-1)->複數(取幅度分量)->實數,看起來很複雜,但是這個工具使得,單從實數域無法解決的頻率分析問題,變得可以解決了。兩者之間的關係是:傅立葉級數中的頻率幅度分量是a1-an,b1-bn,這些離散的數表示頻率特性,每個數都是積分的結果。而傅立葉變換的結果是一個連續函式:對於f域每個取值點a1-aN(N=無窮),它的值都是原始的時域函式和一個三角函式(表示成了複數)積分的結果----這個求解和級數的表示形式是一樣的。不過是把N個離散的積分式子統一為了一個通用的,連續的積分式子。
複頻域,大家都說畫不出來,但是我來畫一下!因為不是一個圖能夠表示清楚的。我用純中文來說:
1.畫一個x,y軸組成的平面,以原點為中心畫一個圓(r=1)。再畫一條豎直線:(直線方程x=2),把它看成是一塊擋板。
2.想象,有一個原子,從(1,0)點出發,沿著這個圓作逆時針勻速圓周運動。想象太陽光從x軸的複數方向射向x軸的正數方向,那麼這個原子運動在擋板(x=2)上面的投影,就是一個簡協震動。
3.再修改一下,x=2對應的不是一個擋板,而是一個印表機的出紙口,那麼,原子運動的過程就在白紙上畫下了一條連續的sin(t)曲線!
上面3條說明了什麼呢?三角函式和圓周運動是一一對應的。如果我想要sin(t+x),或者cos(t)這種形式,我只需要讓原子的起始位置改變一下就可以了:也就是級座標的向量,半徑不變,相位改變。
傅立葉級數的實數展開形式,每一個頻率分量都表示為AnCos(nt)+BnSin(nt),我們可以證明,這個式子可以變成sqr(An^2+Bn^2)sin(nt+x)這樣的單個三角函式形式,那麼:實數值對(An,Bn),就對應了二維平面上面的一個點,相位x對應這個點的相位。實數和複數之間的一一對應關係便建立起來了,因此實數頻率唯一對應某個複數頻率,我們就可以用複數來方便的研究實數的運算:把三角運算變成指數和乘法加法運算。
-------------------------------------------------------------------------
但是,F變換仍然是有限制的(輸入函式的表示必須滿足狄義赫立條件等),為了更廣泛的使用"域"變換的思想來表示一種"廣義"的頻率資訊,我們就發明出了拉普拉斯變換,它的連續形式對應F變換,離散形式就成了Z變換。離散訊號呢?離散周期函式的F級數,項數有限,離散非周期函式(看為週期延拓以後仍然是離散周期函式),離散F級數,仍然項數有限。離散的F變換,很容易理解----連續訊號通過一個週期取樣濾波器,也就是頻率域和一堆脈衝相乘。時域取樣對應頻域週期延拓。為什麼?反過來容易理解了,時域的週期延拓對應頻率域的一堆脈衝。
兩者的區別:FT[f(t)]=從負無窮到正無窮對[f(t)exp(-jwt)]積分LT[f(t)]=從零到正無窮對[f(t)exp(-st)]積分(由於實際應用,通常只做單邊Laplace變換,即積分從零開始)具體地,在Fourier積分變換中,所乘因子為exp(-jwt),此處,-jwt顯然是為一純虛數;而在laplace變換中,所乘因子為exp(-st),其中s為一複數:s=D+jw,jw是為虛部,相當於Fourier變換中的jwt,而D則是實部,作為衰減因子,這樣就能將許多無法作Fourier變換的函式(比如exp(at),a>0)做域變換。
而Z變換,簡單地說,就是離散訊號(也可以叫做序列)的Laplace變換,可由抽樣訊號的Laplace變換匯出。ZT[f(n)]=從n為負無窮到正無窮對[f(n)Z^(-n)]求和。Z域的物理意義:由於值被離散了,所以輸入輸出的過程和花費的物理時間已經沒有了必然的關係(t只對連續訊號有意義),所以頻域的考察變得及其簡單起來,我們把(1,-1,1,-1,1,-1)這樣的基本序列看成是數字頻率最高的序列,他的數字頻率是1Hz(數字角頻率2Pi),其他的數字序列頻率都是N分之1Hz,頻率分解的結果就是0-2Pi角頻率當中的若干個值的集合,也是一堆離散的數。由於時頻都是離散的,所以在做變換的時候,不需要寫出衝擊函式的因子。
離散傅立葉變換到快速傅立葉變換----由於離散傅立葉變換的次數是O(N^2),於是我們考慮把離散序列分解成兩兩一組進行離散傅立葉變換,變換的計算複雜度就下降到了O(NlogN),再把計算的結果累加O(N),這就大大降低了計算複雜度。
再說一個高階話題:小波。在實際的工程應用中,前面所說的這些變換大部分都已經被小波變換代替了。
什麼是小波?先說什麼是波:傅立葉級數裡面的分量,sin/cos函式就是波,sin(t)/cos(t)經過幅度的放縮和頻率的收緊,變成了一系列的波的求和,一致收斂於原始函式。注意傅立葉級數求和的收斂性是對於整個數軸而言的,嚴格的。不過前面我們說了,實際應用FFT的時候,我們只需要關注部分訊號的傅立葉變換然後求出一個整體和就可以了,那麼對於函式的部分分量,我們只需要保證這個用來充當磚塊的"波函式",在某個區間(用窗函式來濾波)內符合那幾個可積分和收斂的定義就可以了,因此傅立葉變換的"波"因子,就可以不使用三角函式,而是使用一系列從某些基本函式構造出來的函式族,只要這個基本函式符合那些收斂和正交的條件就可以了。怎麼構造這樣的基本函式呢?sin(t)被加了方形窗以後,對映到頻域是一堆無窮的雜湊脈衝,所以不能再用三角函數了。我們要得到頻率域收斂性好的函式族,能覆蓋頻率域的低端部分。說的遠一點,如果是取數字訊號的小波變換,那麼基礎小波要保證數字角頻率是最大的2Pi。利用小波進行離頻譜分析的方法,不是像傅立葉級數那樣求出所有的頻率分量,也不是向傅立葉變換那樣看頻譜特性,而是做某種濾波,看看在某種數字角頻率的波峰值大概是多少。可以根據實際需要得到如干個數字序列。
我們採用(0,f),(f,2f),(2f,4f)這樣的倍頻關係來考察函式族的頻率特性,那麼對應的時間波形就是倍數擴充套件(且包含調製---所以才有頻譜搬移)的一系列函式族。頻域是窗函式的基本函式,時域就是鐘形函式。當然其他型別的小波,雖然頻率域不是窗函式,但是仍然可用:因為小波積分求出來的變換,是一個值,例如(0,f)裡包含的總能量值,(f,2f)裡面包含的總能量值。所以即使頻域的分割不是用長方形而是其他的圖形,對於結果來說影響不大。同時,這個頻率域的值,它的解析度密度和時域小波基函式的時間解析度是衝突的(時域緊頻域寬,時域寬頻域緊),所以設計的時候受到海森堡測不準原理的制約。Jpeg2000壓縮就是小波:因為時頻都是區域性的,變換結果是數值點而不是向量,所以,計算複雜度從FFT的O(NlgN)下降到了O(N),效能非常好。
用中文說了這麼多,基本的思想已經表達清楚了,為了"研究方便",從實數傅立葉級數展開,到創造了複數域的傅立葉級數展開,再到傅立葉變換,再擴充套件到拉式變換,再為了時頻都離散的情況簡化為Z變換,全部都用一根主線聯絡起來了。