LeetCode題解:3Sum
阿新 • • 發佈:2019-01-08
3Sum
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
思路:
先回憶一下2sum問題的解法。對從小到大排序的陣列,在陣列前後各放一個指標。如果指標對應數的和大於給定值,則右移最左邊的指標,反之左移最右邊的指標,直到和是給定值或者兩個指標碰撞。3Sum可以首先固定一個數,然後進行2Sum。
如果需要unique的解法,一種方法是先給出所有解,然後做一個std::unique,另一種方法是記錄之前指標的值,然後進行新的迴圈時檢測指標對應的值是否更新。
題解:
class Solution { public: vector<vector<int>> ret; int head; void two_sum (const vector<int>& v, vector<int>::const_iterator c1, int expectation) { if (v.cend() - c1 <= 1) return; vector<int>::const_iterator c2 = v.cend() - 1; while (c1 < c2) { int twos = *c1 + *c2; if (twos == expectation) { ret.emplace_back (vector<int> {{head, *c1, *c2}}); int cc1 = *c1; while (c1 < c2 && cc1 == *c1) ++c1; } else if (twos < expectation) ++c1; else --c2; } } vector<vector<int> > threeSum (vector<int>& num) { ret.clear(); if (num.empty()) return ret; sort (begin (num), end (num)); head = num.front(); for (auto n = num.cbegin(); n != num.cend(); ++n) { if (n != num.cbegin() && *n == head) continue; head = *n; two_sum (num, n + 1, -*n); } return ret; } };