1. 程式人生 > >python——dataframe向下向上填充,fillna和ffill

python——dataframe向下向上填充,fillna和ffill

首先新建一個dataframe:
In[8]: df = pd.DataFrame({'name':list('ABCDA'),'house':[1,1,2,3,3],'date':['2010-01-01','2010-06-09','2011-12-03','2011-04-05','2012-03-23']})
In[9]: df
Out[9]: 
         date  house name
0  2010-01-01      1    A
1  2010-06-09      1    B
2  2011-12-03      2    C
3  2011-04-05      3    D
4  2012-03-23      3    A

將date列改為時間型別:
In[12]: df.date = pd.to_datetime(df.date)

資料的含義是這樣的,我們有ABCD四個人的資料,已知A在2010-01-01的時候,名下有1套房,B在2010-06-09的時候,名下有1套房,C在2011-12-03的時候,有2套房,D在2011-04-05的時候有3套房,A在2012-02-23的時候,資料更新了,有兩套房。

要求在有姓名和時間的情況下,能給出其名下有幾套房:

比如A在2010-01-01與2012-03-23期間任意一天,都應該是1套房,在2012-03-23之後,都是3套房。

我們使用pandas的fillna方法,選擇ffill。

首先我們獲得一個2010-01-01到2017-12-01的dataframe

In[14]: time_range = pd.DataFrame(
    pd.date_range('2010-01-01','2017-12-01',freq='D'), columns=['date']).set_index("date")
In[15]: time_range
Out[15]: 
Empty DataFrame
Columns: []
Index: [2010-01-01 00:00:00, 2010-01-02 00:00:00, 2010-01-03 00:00:00, 2010-01-04 00:00:00, 2010-01-05 00:00:00, 2010-01-06 00:00:00, 2010-01-07 00:00:00, 2010-01-08 00:00:00, 2010-01-09 00:00:00, 2010-01-10 00:00:00, 2010-01-11 00:00:00, 2010-01-12 00:00:00, 2010-01-13 00:00:00, 2010-01-14 00:00:00, 2010-01-15 00:00:00, 2010-01-16 00:00:00, 2010-01-17 00:00:00, 2010-01-18 00:00:00, 2010-01-19 00:00:00, 2010-01-20 00:00:00, 2010-01-21 00:00:00, 2010-01-22 00:00:00, 2010-01-23 00:00:00, 2010-01-24 00:00:00, 2010-01-25 00:00:00, 2010-01-26 00:00:00, 2010-01-27 00:00:00, 2010-01-28 00:00:00, 2010-01-29 00:00:00, 2010-01-30 00:00:00, 2010-01-31 00:00:00, 2010-02-01 00:00:00, 2010-02-02 00:00:00, 2010-02-03 00:00:00, 2010-02-04 00:00:00, 2010-02-05 00:00:00, 2010-02-06 00:00:00, 2010-02-07 00:00:00, 2010-02-08 00:00:00, 2010-02-09 00:00:00, 2010-02-10 00:00:00, 2010-02-11 00:00:00, 2010-02-12 00:00:00, 2010-02-13 00:00:00, 2010-02-14 00:00:00, 2010-02-15 00:00:00, 2010-02-16 00:00:00, 2010-02-17 00:00:00, 2010-02-18 00:00:00, 2010-02-19 00:00:00, 2010-02-20 00:00:00, 2010-02-21 00:00:00, 2010-02-22 00:00:00, 2010-02-23 00:00:00, 2010-02-24 00:00:00, 2010-02-25 00:00:00, 2010-02-26 00:00:00, 2010-02-27 00:00:00, 2010-02-28 00:00:00, 2010-03-01 00:00:00, 2010-03-02 00:00:00, 2010-03-03 00:00:00, 2010-03-04 00:00:00, 2010-03-05 00:00:00, 2010-03-06 00:00:00, 2010-03-07 00:00:00, 2010-03-08 00:00:00, 2010-03-09 00:00:00, 2010-03-10 00:00:00, 2010-03-11 00:00:00, 2010-03-12 00:00:00, 2010-03-13 00:00:00, 2010-03-14 00:00:00, 2010-03-15 00:00:00, 2010-03-16 00:00:00, 2010-03-17 00:00:00, 2010-03-18 00:00:00, 2010-03-19 00:00:00, 2010-03-20 00:00:00, 2010-03-21 00:00:00, 2010-03-22 00:00:00, 2010-03-23 00:00:00, 2010-03-24 00:00:00, 2010-03-25 00:00:00, 2010-03-26 00:00:00, 2010-03-27 00:00:00, 2010-03-28 00:00:00, 2010-03-29 00:00:00, 2010-03-30 00:00:00, 2010-03-31 00:00:00, 2010-04-01 00:00:00, 2010-04-02 00:00:00, 2010-04-03 00:00:00, 2010-04-04 00:00:00, 2010-04-05 00:00:00, 2010-04-06 00:00:00, 2010-04-07 00:00:00, 2010-04-08 00:00:00, 2010-04-09 00:00:00, 2010-04-10 00:00:00, ...]

[2892 rows x 0 columns]
然後用上上篇部落格中提到的pivot_table將原本的df轉變之後,與time_range進行merger操作。
In[16]: df = pd.pivot_table(df, columns='name', index='date')

In[17]: df
Out[17]: 
           house               
name           A    B    C    D
date                           
2010-01-01   1.0  NaN  NaN  NaN
2010-06-09   NaN  1.0  NaN  NaN
2011-04-05   NaN  NaN  NaN  3.0
2011-12-03   NaN  NaN  2.0  NaN
2012-03-23   3.0  NaN  NaN  NaN
In[18]: df = df.merge(time_range,how="right", left_index=True, right_index=True)
然後再進行向下填充操作:
In[20]: df = df.fillna(method='ffill')
最後:
df = df.stack().reset_index()

結果太長,這裡就不貼上了。如果想向上填充,可選擇method = 'bfill‘