Numpy:排序及返回索引、多重複制、兩個矩陣對應元素取最小值、隨機選擇元素
阿新 • • 發佈:2019-01-11
1.排序: sort()
2.按行或按列找到最大值的索引:argmax()# 方法一: import numpy as np a = np.array([[4,3,5,],[1,2,1]]) print (a) b = np.sort(a, axis=1) # 對a按每行中元素從小到大排序 print (b) # 輸出 [[4 3 5] [1 2 1]] [[3 4 5] [1 1 2]] # 方法二: import numpy as np a = np.array([[4,3,5,],[1,2,1]]) print (a) a.sort(axis=1) print (a) # 輸出 [[4 3 5] [1 2 1]] [[3 4 5] [1 1 2]] # 方法三: import numpy as np a = np.array([4, 3, 1, 2]) b = np.argsort(a) # 求a從小到大排序的座標 print (b) print (a[b]) # 按求出來的座標順序排序 # 輸出 [2 3 1 0] [1 2 3 4]
3.多重複制:tile()import numpy as np data = np.sin(np.arange(20)).reshape(5, 4) print (data) ind = data.argmax(axis=0) # 按列得到每一列中最大元素的索引,axis=1為按行 print (ind) data_max = data[ind, range(data.shape[1])] # 將最大值取出來 print (data_max) # 輸出 [[ 0. 0.84147098 0.90929743 0.14112001] [-0.7568025 -0.95892427 -0.2794155 0.6569866 ] [ 0.98935825 0.41211849 -0.54402111 -0.99999021] [-0.53657292 0.42016704 0.99060736 0.65028784] [-0.28790332 -0.96139749 -0.75098725 0.14987721]] [2 0 3 1] [ 0.98935825 0.84147098 0.99060736 0.6569866 ] print data.max(axis=0) #也可以直接取最大值 # 輸出 [ 0.98935825 0.84147098 0.99060736 0.6569866 ]
import numpy as np a = np.array([5, 10, 15]) print(a) print('---') b = np.tile(a, (4, 1)) # 引數(4, 1)為按行復制4倍,按列複製1倍 print(b) # 輸出 [ 5 10 15] --- [[ 5 10 15] [ 5 10 15] [ 5 10 15] [ 5 10 15]] c = np.tile(a, (2, 3)) # 引數(2, 3)為按行復制2倍,按列複製3倍 print(c) # 輸出 [[ 5 10 15 5 10 15 5 10 15] [ 5 10 15 5 10 15 5 10 15]]
4.兩個矩陣對應元素取最小值:minimum()
import numpy as np
a = array([[21,-12,11],[1,-3,5],[3,4,5]])
b = array([[11,12,13],[2,3,4],[3,4,5]])
c = minimum(a,b)
>>> c
array([[ 11, -12, 11],
[ 1, -3, 4],
[ 3, 4, 5]])
5.使用Python random模組的choice方法隨機選擇某個元素
foo = ['a', 'b', 'c', 'd', 'e']
from random import choice
print choice(foo)