Kafka學習整理七(producer和consumer程式設計實踐)
實踐程式碼採用kafka-clients V0.10.0.0 編寫
一、編寫producer
第一步:使用./kafka-topics.sh 命令建立topic及partitions 分割槽數
./kafka-topics.sh --create--zookepper "172.16.49.173:2181" --topic "producer_test" --partitions 10 replication-factor 3
第二步:實現org.apache.kafka.clients.producer.Partitioner
分割槽介面,以實現自定義的訊息分割槽
import java.util.List;
import java.util.Map;
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class MyPartition implements Partitioner {
private static Logger LOG = LoggerFactory.getLogger(MyPartition.class);
public MyPartition() {
// TODO Auto-generated constructor stub
}
@Override
public void configure(Map<String, ?> configs) {
// TODO Auto-generated method stub
}
@Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
// TODO Auto-generated method stub
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
int numPartitions = partitions.size();
int partitionNum = 0;
try {
partitionNum = Integer.parseInt((String) key);
} catch (Exception e) {
partitionNum = key.hashCode() ;
}
LOG.info("the message sendTo topic:"+ topic+" and the partitionNum:"+ partitionNum);
return Math.abs(partitionNum % numPartitions);
}
@Override
public void close() {
// TODO Auto-generated method stub
}
}
第三步:編寫 producer
import java.util.Properties;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class PartitionTest {
private static Logger LOG = LoggerFactory.getLogger(PartitionTest.class);
public static void main(String[] args) {
// TODO Auto-generated method stub
Properties props = new Properties();
props.put("bootstrap.servers", "172.16.49.173:9092;172.16.49.173:9093");
props.put("retries", 0);
// props.put("batch.size", 16384);
props.put("linger.ms", 1);
// props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("partitioner.class", "com.goodix.kafka.MyPartition");
KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);
ProducerRecord<String, String> record = new ProducerRecord<String, String>("producer_test", "2223132132",
"test23_60");
producer.send(record, new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception e) {
// TODO Auto-generated method stub
if (e != null)
LOG.error("the producer has a error:" + e.getMessage());
else {
LOG.info("The offset of the record we just sent is: " + metadata.offset());
LOG.info("The partition of the record we just sent is: " + metadata.partition());
}
}
});
try {
Thread.sleep(1000);
producer.close();
} catch (InterruptedException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
}
}
備註: 要先用命令建立topic及partitions 分割槽數;否則在自定義的分割槽中如果有大於1的情況下,傳送資料訊息到kafka時會報
expired due to timeout while requesting metadata from brokers
錯誤
二、使用Old Consumer High Level API編寫consumer
第一步:編寫具體處理訊息的類
import java.io.UnsupportedEncodingException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.message.MessageAndMetadata;
public class Consumerwork implements Runnable {
private static Logger LOG = LoggerFactory.getLogger(Consumerwork.class);
@SuppressWarnings("rawtypes")
private KafkaStream m_stream;
private int m_threadNumber;
@SuppressWarnings("rawtypes")
public Consumerwork(KafkaStream a_stream,int a_threadNumber) {
// TODO Auto-generated constructor stub
m_threadNumber = a_threadNumber;
m_stream = a_stream;
}
@SuppressWarnings("unchecked")
@Override
public void run() {
// TODO Auto-generated method stub
ConsumerIterator<byte[], byte[]> it = m_stream.iterator();
while (it.hasNext())
try {
MessageAndMetadata<byte[], byte[]> thisMetadata=it.next();
String jsonStr = new String(thisMetadata.message(),"utf-8") ;
LOG.info("Thread " + m_threadNumber + ": " +jsonStr);
LOG.info("partion"+thisMetadata.partition()+",offset:"+thisMetadata.offset());
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
} catch (UnsupportedEncodingException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
第二步:編寫啟動Consumer主類
mport java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.Scanner;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
public class ConsumerGroup {
private final ConsumerConnector consumer;
private final String topic;
private ExecutorService executor;
private static Logger LOG = LoggerFactory.getLogger(ConsumerGroup.class);
public ConsumerGroup(String a_zookeeper, String a_groupId, String a_topic) {
consumer = kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig(a_zookeeper, a_groupId));
this.topic = a_topic;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("請輸入zookeeper叢集地址(如zk1:2181,zk2:2181,zk3:2181):");
String zooKeeper = sc.nextLine();
System.out.println("請輸入指定的消費group名稱:");
String groupId = sc.nextLine();
System.out.println("請輸入指定的消費topic名稱:");
String topic = sc.nextLine();
System.out.println("請輸入指定的消費處理執行緒數:");
int threads = sc.nextInt();
LOG.info("Starting consumer kafka messages with zk:" + zooKeeper + " and the topic is " + topic);
ConsumerGroup example = new ConsumerGroup(zooKeeper, groupId, topic);
example.run(threads);
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
// example.shutdown();
}
private void shutdown() {
// TODO Auto-generated method stub
if (consumer != null)
consumer.shutdown();
if (executor != null)
executor.shutdown();
try {
if (!executor.awaitTermination(5000, TimeUnit.MILLISECONDS)) {
LOG.info("Timed out waiting for consumer threads to shut down, exiting uncleanly");
}
} catch (InterruptedException e) {
LOG.info("Interrupted during shutdown, exiting uncleanly");
}
}
private void run(int a_numThreads) {
// TODO Auto-generated method stub
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, new Integer(a_numThreads));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic);
// now launch all the threads
//
executor = Executors.newFixedThreadPool(a_numThreads);
// now create an object to consume the messages
//
int threadNumber = 0;
LOG.info("the streams size is "+streams.size());
for (final KafkaStream stream : streams) {
executor.submit(new com.goodix.kafka.oldconsumer.Consumerwork(stream, threadNumber));
// consumer.commitOffsets();
threadNumber++;
}
}
private ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
// TODO Auto-generated method stub
Properties props = new Properties();
props.put("zookeeper.connect", a_zookeeper);
props.put("group.id", a_groupId);
props.put("zookeeper.session.timeout.ms", "60000");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000");
props.put("auto.offset.reset", "smallest");
// props.put("rebalance.max.retries", "5");
// props.put("rebalance.backoff.ms", "15000");
return new ConsumerConfig(props);
}
}
1. topicCountMap.put(topic, new Integer(a_numThreads)) 是告訴Kafka我有多少個執行緒來處理訊息。
(1). 這個執行緒數必須是小等於topic的partition分割槽數;可以通過
./kafka-topics.sh --describe --zookeeper "172.16.49.173:2181" --topic "producer_test"
命令來檢視分割槽的情況
(2). kafka會根據partition.assignment.strategy指定的分配策略來指定執行緒消費那些分割槽的訊息;這裡沒有單獨配置該項即是採用的預設值range策略(按照階段平均分配)。比如分割槽有10個、執行緒數有3個,則執行緒 1消費0,1,2,3,執行緒2消費4,5,6,執行緒3消費7,8,9。另外一種是roundrobin(迴圈分配策略),官方文件中寫有使用該策略有兩個前提條件的,所以一般不要去設定。
(3). 經過測試:consumerMap.get(topic).size(),應該是獲得的目前該topic有資料的分割槽數
(4). stream即指的是來自一個或多個伺服器上的一個或者多個partition的訊息。每一個stream都對應一個單執行緒處理。因此,client能夠設定滿足自己需求的stream數目。總之,一個stream也許代表了多個伺服器partion的訊息的聚合,但是每一個 partition都只能到一個stream2. Executors.newFixedThreadPool(a_numThreads)是建立一個建立固定容量大小的緩衝池:每次提交一個任務就建立一個執行緒,直到執行緒達到執行緒池的最大大小。執行緒池的大小一旦達到最大值就會保持不變,如果某個執行緒因為執行異常而結束,那麼執行緒池會補充一個新執行緒。
3. props.put(“auto.offset.reset”, “smallest”) 是指定從最小沒有被消費offset開始;如果沒有指定該項則是預設的為largest,這樣的話該consumer就得不到生產者先產生的訊息。
4. 要使用old consumer API需要引用kafka_2.11以及kafka-clients。
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>0.10.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.10.0.0</version>
</dependency>
三、使用Old SimpleConsumerAPI編寫consumer
這是一個更加底層和複雜的API
使用的場景
由於使用該API需要自己控制的項比較多,也比較複雜,官方給出了一些合適的適用場景,也可以理解成為這些場景是High Level Consumer API 不能夠做到的
1. 針對一個訊息讀取多次
2. 在一個process中,僅僅處理一個topic中的一個partitions
3. 使用事務,確保每個訊息只被處理一次
需要處理的事情
1. 必須在程式中跟蹤offset值
2. 必須找出指定Topic Partition中的lead broker
3. 必須處理broker的變動
使用SimpleConsumer的步驟
首先,你必須知道讀哪個topic的哪個partition
然後,找到負責該partition的broker leader,從而找到存有該partition副本的那個broker
再者,自己去寫request並fetch資料
最終,還要注意需要識別和處理broker leader的改變
示例
package com.goodix.kafka.oldconsumer;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.*;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class SimpleExample {
private static Logger LOG = LoggerFactory.getLogger(SimpleExample.class);
public static void main(String args[]) {
SimpleExample example = new SimpleExample();
Scanner sc = new Scanner(System.in);
System.out.println("請輸入broker節點的ip地址(如172.16.49.173)");
String brokerIp = sc.nextLine();
List<String> seeds = new ArrayList<String>();
seeds.add(brokerIp);
System.out.println("請輸入broker節點埠號(如9092)");
int port = Integer.parseInt( sc.nextLine());
System.out.println("請輸入要訂閱的topic名稱(如test)");
String topic = sc.nextLine();
System.out.println("請輸入要訂閱要查詢的分割槽(如0)");
int partition = Integer.parseInt( sc.nextLine());
System.out.println("請輸入最大讀取訊息數量(如10000)");
long maxReads = Long.parseLong( sc.nextLine());
try {
example.run(maxReads, topic, partition, seeds, port);
} catch (Exception e) {
LOG.error("Oops:" + e);
e.printStackTrace();
}
}
private List<String> m_replicaBrokers = new ArrayList<String>();
public SimpleExample() {
m_replicaBrokers = new ArrayList<String>();
}
public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, int a_port) throws Exception {
// find the meta data about the topic and partition we are interested in
//獲取指定Topic partition的元資料
PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
LOG.error("Can't find metadata for Topic and Partition. Exiting");
return;
}
if (metadata.leader() == null) {
LOG.error("Can't find Leader for Topic and Partition. Exiting");
return;
}
String leadBroker = metadata.leader().host();
String clientName = "Client_" + a_topic + "_" + a_partition;
SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
long readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName);
int numErrors = 0;
while (a_maxReads > 0) {
if (consumer == null) {
consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
}
FetchRequest req = new FetchRequestBuilder()
.clientId(clientName)
.addFetch(a_topic, a_partition, readOffset, 100000) // Note: this fetchSize of 100000 might need to be increased if large batches are written to Kafka
.build();
FetchResponse fetchResponse = consumer.fetch(req);
if (fetchResponse.hasError()) {
numErrors++;
// Something went wrong!
short code = fetchResponse.errorCode(a_topic, a_partition);
LOG.error("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
if (numErrors > 5) break;
if (code == ErrorMapping.OffsetOutOfRangeCode()) {
// We asked for an invalid offset. For simple case ask for the last element to reset
readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName);
continue;
}
consumer.close();
consumer = null;
leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
continue;
}
numErrors = 0;
long numRead = 0;
for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
long currentOffset = messageAndOffset.offset();
if (currentOffset < readOffset) {
LOG.error("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
continue;
}
readOffset = messageAndOffset.nextOffset();
ByteBuffer payload = messageAndOffset.message().payload();
byte[] bytes = new byte[payload.limit()];
payload.get(bytes);
LOG.info("the messag's offset is :"+String.valueOf(messageAndOffset.offset()) + " and the value is :" + new String(bytes, "UTF-8"));
numRead++;
a_maxReads--;
}
if (numRead == 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
if (consumer != null) consumer.close();
}
public static long getLastOffset(SimpleConsumer consumer, String topic, int partition,
long whichTime, String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(
requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request);
if (response.hasError()) {
LOG.error("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition) );
return 0;
}
long[] offsets = response.offsets(topic, partition);
return offsets[0];
}
/**
* 找一個leader broker
* 遍歷每個broker,取出該topic的metadata,然後再遍歷其中的每個partition metadata,如果找到我們要找的partition就返回
* 根據返回的PartitionMetadata.leader().host()找到leader broker
* @param a_oldLeader
* @param a_topic
* @param a_partition
* @param a_port
* @return
* @throws Exception
*/
private String findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_port) throws Exception {
for (int i = 0; i < 3; i++) {
boolean goToSleep = false;
PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
goToSleep = true;
} else if (metadata.leader() == null) {
goToSleep = true;
} else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
// first time through if the leader hasn't changed give ZooKeeper a second to recover
// second time, assume the broker did recover before failover, or it was a non-Broker issue
//
goToSleep = true;
} else {
return metadata.leader().host();
}
if (goToSleep) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
LOG.error("Unable to find new leader after Broker failure. Exiting");
throw new Exception("Unable to find new leader after Broker failure. Exiting");
}
/**
*
* @param a_seedBrokers
* @param a_port
* @param a_topic
* @param a_partition
* @return
*/
private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port, String a_topic, int a_partition) {
PartitionMetadata returnMetaData = null;
loop:
for (String seed : a_seedBrokers) { //遍歷每個broker
SimpleConsumer consumer = null;
try {
// 建立Simple Consumer,
consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");
List<String> topics = Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
//傳送TopicMetadata Request請求
kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
//取到Topic的Metadata
List<TopicMetadata> metaData = resp.topicsMetadata();
//遍歷每個partition的metadata
for (TopicMetadata item : metaData) {
for (PartitionMetadata part : item.partitionsMetadata()) {
// 判斷是否是要找的partition
if (part.partitionId() == a_partition) {
returnMetaData = part;
//找到就返回
break loop;
}
}
}
} catch (Exception e) {
LOG.info("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic
+ ", " + a_partition + "] Reason: " + e);
} finally {
if (consumer != null) consumer.close();
}
}
if (returnMetaData != null) {
m_replicaBrokers.clear();
for (kafka.cluster.BrokerEndPoint replica : returnMetaData.replicas()) {
m_replicaBrokers.add(replica.host());
}
}
return returnMetaData;
}
}
四、 使用NewConsumer API
(一)、自動提交offset偏移量
Properties props = new Properties();
//brokerServer(kafka)ip地址,不需要把所有叢集中的地址都寫上,可是一個或一部分
props.put("bootstrap.servers", "172.16.49.173:9092");
//設定consumer group name,必須設定
props.put("group.id", a_groupId);
//設定自動提交偏移量(offset),由auto.commit.interval.ms控制提交頻率
props.put("enable.auto.commit", "true");
//偏移量(offset)提交頻率
props.put("auto.commit.interval.ms", "1000");
//設定使用最開始的offset偏移量為該group.id的最早。如果不設定,則會是latest即該topic最新一個訊息的offset
//如果採用latest,消費者只能得道其啟動後,生產者生產的訊息
props.put("auto.offset.reset", "earliest");
//設定心跳時間
props.put("session.timeout.ms", "30000");
//設定key以及value的解析(反序列)類
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
//訂閱topic
consumer.subscribe(Arrays.asList("topic_test"));
while (true) {
//每次取100條資訊
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
System.out.printf("offset = %d, key = %s, value = %s", record.offset(), record.key(), record.value());
}
需要注意的:
group.id :必須設定
auto.offset.reset:如果想獲得消費者啟動前生產者生產的訊息,則必須設定為earliest;如果只需要獲得消費者啟動後生產者生產的訊息,則不需要設定該項
enable.auto.commit(預設值為true):如果使用手動commit offset則需要設定為false,並再適當的地方呼叫consumer.commitSync()
,否則每次啟動消費折後都會從頭開始消費資訊(在auto.offset.reset=earliest的情況下);
(二)、 自己控制偏移量提交
很多時候,我們是希望在獲得訊息並經過一些邏輯處理後,才認為該訊息已被消費,這可以通過自己控制偏移量提交來實現。
示例1:批量提交偏移量
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 手動批量提交偏移量
* @author lxh
*
*/
public class ManualOffsetConsumer {
private static Logger LOG = LoggerFactory.getLogger(ManualOffsetConsumer.class);
public ManualOffsetConsumer() {
// TODO Auto-generated constructor stub
}
public static void main(String[] args) {
// TODO Auto-generated method stub
Properties props = new Properties();
//props.put("bootstrap.servers", bootstrapServers);//"172.16.49.173:9092;172.16.49.173:9093");
//設定brokerServer(kafka)ip地址
props.put("bootstrap.servers", "172.16.49.173:9092");
//設定consumer group name
props.put("group.id","manual_g1");
props.put("enable.auto.commit", "false");
//設定使用最開始的offset偏移量為該group.id的最早。如果不設定,則會是latest即該topic最新一個訊息的offset
//如果採用latest,消費者只能得道其啟動後,生產者生產的訊息
props.put("auto.offset.reset", "earliest");
//
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String ,String> consumer = new KafkaConsumer<String ,String>(props);
consumer.subscribe(Arrays.asList("producer_test"));
final int minBatchSize = 5; //批量提交數量
List<ConsumerRecord<String, String>> buffer = new ArrayList<>();
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
LOG.info("consumer message values is "+record.value()+" and the offset is "+ record.offset());
buffer.add(record);
}
if (buffer.size() >= minBatchSize) {
LOG.info("now commit offset");
consumer.commitSync();
buffer.clear();
}
}
}
}
示例2:消費完一個分割槽後手動提交偏移量
package com.goodix.kafka;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Properties;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 消費完一個分割槽後手動提交偏移量
* @author lxh
*
*/
public class ManualCommitPartion {
private static Logger LOG = LoggerFactory.getLogger(ManualCommitPartion.class);
public ManualCommitPartion() {
// TODO Auto-generated constructor stub
}
public static void main(String[] args) {
// TODO Auto-generated method stub
Properties props = new Properties();
//props.put("bootstrap.servers", bootstrapServers);//"172.16.49.173:9092;172.16.49.173:9093");
//設定brokerServer(kafka)ip地址
props.put("bootstrap.servers", "172.16.49.173:9092");
//設定consumer group name
props.put("group.id","manual_g2");
props.put("enable.auto.commit", "false");
//設定使用最開始的offset偏移量為該group.id的最早。如果不設定,則會是latest即該topic最新一個訊息的offset
//如果採用latest,消費者只能得道其啟動後,生產者生產的訊息
props.put("auto.offset.reset", "earliest");
//
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String ,String> consumer = new KafkaConsumer<String ,String>(props);
consumer.subscribe(Arrays.asList("producer_test"));
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Long.MAX_VALUE);
for (TopicPartition partition : records.partitions()) {
List<ConsumerRecord<String, String>> partitionRecords = records.records(partition);
for (ConsumerRecord<String, String> record : partitionRecords) {
LOG.info("now consumer the message it's offset is :"+record.offset() + " and the value is :" + record.value());
}
long lastOffset = partitionRecords.get(partitionRecords.size() - 1).offset();
LOG.info("now commit the partition[ "+partition.partition()+"] offset");
consumer.commitSync(Collections.singletonMap(partition, new OffsetAndMetadata(lastOffset + 1)));
}
}
}
}
(三)、指定消費某個分割槽的訊息
import java.util.Arrays;
import java.util.Properties;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* 消費指定分割槽的訊息
* @author lxh
*
*/
public class ManualPartion {
private static Logger LOG = LoggerFactory.getLogger(ManualPartion.class);
public ManualPartion() {
// TODO Auto-generated constructor stub
}
public static void main(String[] args) {
Properties props = new Properties();
//設定brokerServer(kafka)ip地址
props.put("bootstrap.servers", "172.16.49.173:9092");
//設定consumer group name
props.put("group.id", "manual_g4");
//設定自動提交偏移量(offset),由auto.commit.interval.ms控制提交頻率
props.put("enable.auto.commit", "true");
//偏移量(offset)提交頻率
props.put("auto.commit.interval.ms", "1000");
//設定使用最開始的offset偏移量為該group.id的最早。如果不設定,則會是latest即該topic最新一個訊息的offset
//如果採用latest,消費者只能得道其啟動後,生產者生產的訊息
props.put("auto.offset.reset", "earliest");
//
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
TopicPartition partition0 = new TopicPartition("producer_test", 0);
TopicPartition partition1 = new TopicPartition("producer_test", 1);
KafkaConsumer<String ,String> consumer = new KafkaConsumer<String ,String>(props);
consumer.assign(Arrays.asList(partition0, partition1));
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Long.MAX_VALUE);
for (ConsumerRecord<String, String> record : records)
System.out.printf("offset = %d, key = %s, value = %s \r\n", record.offset(), record.key(), record.value());
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}
總結
使用newConsumer API 只需要引用kafka-clients即可
newConsumer API 更加易懂、易用
<dependency>
&l