Pindrop Fraud Detection
Pindrop Protect is an advanced call center fraud detection and prevention solution that is seamlessly integrated with Amazon Connect, helping you deploy a secure, scalable, and cost-effective call center solution with ease. By using Phoneprinting™ 2.0 technology to quickly identify fraudulent callers, Pindrop helps you mitigate the impact of targeted attacks on your call center. Instead of relying solely on the call center’s skill in identifying fraudulent activity, Pindrop extracts 1,380 audio features from the call data, then uses machine learning technology to generate a risk score for each caller, helping you optimize the customer experience and keep your organization protected.
相關推薦
Pindrop Fraud Detection
Pindrop Protect is an advanced call center fraud detection and prevention solution that is seamlessly integrated with Amazon Connect, helping you
Reducing false positives in credit card fraud detection: Model extracts granular behavioral patterns from transaction data to mo
Consumers' credit cards are declined surprisingly often in legitimate transactions. One cause is that fraud-detecting technologies used by a consumer's ba
Reducing false positives in credit card fraud detection
Have you ever used your credit card at a new store or location only to have it declined? Has a sale ever been blocked because you charged a higher amount t
LabelRank(A Stabilized Label Propagation Algorithm for Community Detection in Networks)非重疊社區發現
date nal zed con ati rop target lan detect 最近在研究基於標簽傳播的社區分類,LabelRank算法基於標簽傳播和馬爾科夫隨機遊走思路上改裝的算法,引用率較高,打算將代碼實現,便於加深理解。 一、概念 相關概念不再累述,詳情見前兩篇
Meta標簽中的format-detection屬性及含義
format 數字 str strong 點擊 開啟 轉化 翻譯 pan format-detection翻譯成中文的意思是“格式檢測”,顧名思義, 它是用來檢測html裏的一些格式的,那關於meta的format-detection屬性主要是有以下幾個設置: met
VINS(二)Feature Detection and Tracking
rem lib guarantee closure nbsp 遊走 scope port win 系統入口是feature_tracker_node.cpp文件中的main函數 首先創建feature_tracker節點,從配置文件中讀取信息(parameters.cpp)
Android Studio 導入OpenCV 並調試運行face-detection例子
pac oot tools property boolean adl cond dto rgb p { margin-bottom: 0.1in; direction: ltr; color: rgb(0, 0, 10); line-height: 120%; text-a
【轉】論文閱讀(Chenyi Chen——【ACCV2016】R-CNN for Small Object Detection)
數據 大小 table 使用 con 改進 包括 end 修改 Chenyi Chen——【ACCV2016】R-CNN for Small Object Detection 目錄 作者和相關鏈接 方法概括 創新點和貢獻 方法細節 實驗結果 總結與收獲點 參考文獻
Python: scikit-image Blob detection
ont lis spl 圖像 sdn text plot laplacian org 這個用例主要介紹利用三種算法對含有blob的圖像進行檢測。blob 或者叫斑點,就是在一幅圖像上,暗背景上的亮區域。或者亮背景上的暗區域,都能夠稱為blob。主要利用b
Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding
line evel linux 程序 providing form ram -s visio Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Sce
異常檢測(Anomaly detection): 異常檢測算法(應用高斯分布)
fff ati 高斯分布 不同的 detect 我們 src tro images 估計P(x)的分布--密度估計 我們有m個樣本,每個樣本有n個特征值,每個特征都分別服從不同的高斯分布,上圖中的公式是在假設每個特征都獨立的情況下,實際無論每個特征是否獨立,這個公式的效果
讀書筆記 The Random Forest based Detection of Shadowsock's Traffic
base 讀書 tree 框架 mage 參數 mce ado rand 文章框架: 除去introduction、related work,文章首先介紹的是背景知識。1. 為什麽很難檢測Shadowsocks? 2. 隨機森林算法介紹(就是一種分類器,可以將流量分為兩類,
Two-phase clustering process for outliers detection 文章翻譯
存儲器 圖像 必須 傳統 生成樹 dia var oda 不同的 基於二階段聚集模式的異常探測 M.F .Jiang, S.S. Tseng *, C.M. Su 國立交通大學計算機與信息科學系,中國臺北市新竹路100150號 1999年11月17日; 2000年4月
【安全牛學習筆記】SQLMAP自動註入-INHECTION、DETECTION、TECHNIQUES
信息安全 security+ sqlmap自動註入 SQLMAP自動註入04-----INJECTION-p 指定掃描的參數,使--level失效 -p "user-agent,referer"--skip 排除指定的掃描參數 --level=5 --s
YOLO(You Only Look Once):Real-Time Object Detection
path nor bat pen 2-0 object network file with caffe-yolo:https://github.com/xingwangsfu/caffe-yolo YOLO in caffe Update 12-05-2016: Curre
object detection物體檢測基本概念
sta first 物體檢測 base npr poi cores out objects 1.precision-recall https://cn.mathworks.com/help/vision/ref/evaluatedetectionprecision.h
Focal Loss for Dense Object Detection 論文閱讀
因此 分類 技術分享 模型 出發點 oss oca 圖片 同時 何凱明大佬 ICCV 2017 best student paper 作者提出focal loss的出發點也是希望one-stage detector可以達到two-stage detector的準確率,同時
TensorFlow使用object detection訓練並識別自己的模型
point name mode 添加 asr with pipeline stderr powers 使用object detection訓練並識別自己的模型 1.安裝tensorflow(version>=1.4.0) 2.部署tensorflow models
課程四(Convolutional Neural Networks),第三 周(Object detection) —— 0.Learning Goals
member 數據 定位 finding dataset pre intersect sta nal Learning Goals: Understand the challenges of Object Localization, Object Detection a
課程四(Convolutional Neural Networks),第三 周(Object detection) —— 1.Practice questions:Detection algorithms
car mage 分享圖片 nbsp blog obj 分享 圖片 pos 【解釋】 tree的兩個bounding boxes 都要保留,因為交並比小於0.5;car 0.73保留;pedestrain 0.98保留;motor