1. 程式人生 > >SSIM(結構相似性)-數學公式及python實現

SSIM(結構相似性)-數學公式及python實現

SSIM是一種衡量兩幅圖片相似度的指標。
出處來自於2004年的一篇TIP,
標題為:Image Quality Assessment: From Error Visibility to Structural Similarity
地址為:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1284395

PSNR一樣,SSIM也經常用作影象質量的評價。


先了解SSIM的輸入
SSIM的輸入就是兩張影象,我們要得到其相似性的兩張影象。其中一張是未經壓縮的無失真影象(即ground truth),另一張就是你恢復出的影象。所以,SSIM可以作為super-resolution質量的指標。
假設我們輸入的兩張影象分別是x和y,那麼
S

S I M ( x , y ) = [
l ( x , y ) ] α [
c ( x , y ) ] β [ s ( x , y ) ] γ ( 1 ) SSIM(x,y)=[l(x,y)]^\alpha[c(x,y)]^\beta[s(x,y)]^\gamma ---(1)
α > 0 \alpha>0 , β > 0 \beta>0 ,and γ > 0 \gamma>0 .
式1是SSIM的數學定義,其中:
l ( x , y ) = 2 μ x μ y + c 1 μ x 2 + μ y 2 + c 1 , l(x,y)=\frac{2\mu_x\mu_y+c_1}{\mu_x^2+\mu_y^2+c_1},
c ( x , y ) = σ x y + c 2 σ x 2 + σ y 2 + c 2 , c(x,y)=\frac{\sigma_{xy}+c_2}{\sigma_x^2+\sigma_y^2+c_2},
s ( x , y ) = σ x y + c 3 σ x σ y + c 3 s(x,y)=\frac{\sigma_{xy}+c_3}{\sigma_x\sigma_y+c_3}
其中l(x, y)是亮度比較,c(x,y)是對比度比較,s(x,y)是結構比較 μ x \mu_x μ y \mu_y 分別代表x,y的平均值, σ x \sigma_x σ y \sigma_y 分別代表x,y的標準差。 σ x y \sigma_{xy} 代表x和y的協方差。而 c 1 c_1 c 2 c_2 c 3 c_3 分別為常數,避免分母為0帶來的系統錯誤。
在實際工程計算中,我們一般設定 α = β = γ = 1 \alpha=\beta=\gamma=1 ,以及 c 3 = c 2 / 2 c_3=c_2/2 ,可以將SSIM簡化為下:

S S I M ( x , y ) = ( 2 μ x μ y + c 1 ) ( σ x y + c 2 ) ( μ x 2 + μ y 2 + c 1 ) ( σ x 2 + σ y 2 + c 2 ) SSIM(x, y)= \frac{(2\mu_x\mu_y+c_1)(\sigma_{xy}+c_2)}{(\mu_x^2+\mu_y^2+c_1)(\sigma_x^2+\sigma_y^2+c_2)}
總結

  1. SSIM具有對稱性,即SSIM(x,y)=SSIM(y,x)
  2. SSIM是一個0到1之間的數,越大表示輸出影象和無失真影象的差距越小,即影象質量越好。當兩幅影象一模一樣時,SSIM=1;

如PSNR一樣,SSIM這種常用計算函式也被tensorflow收編了,我們只需在tf中呼叫ssim就可以了:

tf.image.ssim(x, y, 255)

原始碼如下:

def ssim(img1, img2, max_val):
  """Computes SSIM index between img1 and img2.

  This function is based on the standard SSIM implementation from:
  Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image
  quality assessment: from error visibility to structural similarity. IEEE
  transactions on image processing.

  Note: The true SSIM is only defined on grayscale.  This function does not
  perform any colorspace transform.  (If input is already YUV, then it will
  compute YUV SSIM average.)

  Details:
    - 11x11 Gaussian filter of width 1.5 is used.
    - k1 = 0.01, k2 = 0.03 as in the original paper.

  The image sizes must be at least 11x11 because of the filter size.

  Example:
  # Read images from file.
      im1 = tf.decode_png('path/to/im1.png')
      im2 = tf.decode_png('path/to/im2.png')
      # Compute SSIM over tf.uint8 Tensors.
      ssim1 = tf.image.ssim(im1, im2, max_val=255)

      # Compute SSIM over tf.float32 Tensors.
      im1 = tf.image.convert_image_dtype(im1, tf.float32)
      im2 = tf.image.convert_image_dtype(im2, tf.float32)
      ssim2 = tf.image.ssim(im1, im2, max_val=1.0)
      # ssim1 and ssim2 both have type tf.float32 and are almost equal.
    img1: First image batch.
    img2: Second image batch.
    max_val: The dynamic range of the images (i.e., the difference between the
      maximum the and minimum allowed values).

  Returns:
    A tensor containing an SSIM value for each image in batch.  Returned SSIM
    values are in range (-1, 1], when pixel values are non-negative. Returns
    a tensor with shape: broadcast(img1.shape[:-3], img2.shape[:-3]).
  """
   _, _, checks = _verify_compatible_image_shapes(img1, img2)
  with ops.control_dependencies(checks):
    img1 = array_ops.identity(img1)

  # Need to convert the images to float32.  Scale max_val accordingly so that
  # SSIM is computed correctly.
  max_val = math_ops.cast(max_val, img1.dtype)
  max_val = convert_image_dtype(max_val, dtypes.float32)
  img1 = convert_image_dtype(img1, dtypes.float32)
  img2 = convert_image_dtype(img2, dtypes.float32)
  ssim_per_channel, _ = _ssim_per_channel(img1, img2, max_val)
  # Compute average over color channels.
  return math_ops.reduce_mean(ssim_per_channel, [-1])

參考:https://en.wikipedia.org/wiki/Structural_similarity