Caffe Prototxt層系列:Convolution Layer
阿新 • • 發佈:2019-01-14
Convolution Layer是CNN中最常見最重要的特徵提取層,形式多種多樣
首先我們先看一下 InnerProductParameter
message ConvolutionParameter { optional uint32 num_output = 1; // The number of outputs for the layer 輸出特徵圖個數(常以特徵圖為單位) optional bool bias_term = 2 [default = true]; // whether to have bias terms 是否使用bias項 // Pad, kernel size, and stride are all given as a single value for equal // dimensions in all spatial dimensions, or once per spatial dimension. repeated uint32 pad = 3; // The padding size; defaults to 0 填充大小(畫素為單位) repeated uint32 kernel_size = 4; // The kernel size 卷積核大小 repeated uint32 stride = 6; // The stride; defaults to 1 步幅大小 // Factor used to dilate the kernel, (implicitly) zero-filling the resulting // holes. (Kernel dilation is sometimes referred to by its use in the // algorithme à trous from Holschneider et al. 1987.) repeated uint32 dilation = 18; // The dilation; defaults to 1 空洞大小 預設1(空洞卷積中常用,如某些語義分割網路) // For 2D convolution only, the *_h and *_w versions may also be used to // specify both spatial dimensions. //2D卷積,當高寬不一致時,常常用下列引數 optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only) 高度填充大小 optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only) 寬度填充大小 optional uint32 kernel_h = 11; // The kernel height (2D only) 卷積核高度 optional uint32 kernel_w = 12; // The kernel width (2D only) 卷積核寬度 optional uint32 stride_h = 13; // The stride height (2D only) y軸步幅 optional uint32 stride_w = 14; // The stride width (2D only) x軸步幅 optional uint32 group = 5 [default = 1]; // The group size for group conv 組卷積 預設1 例項見shufflenet optional FillerParameter weight_filler = 7; // The filler for the weight 卷積權重引數 optional FillerParameter bias_filler = 8; // The filler for the bias 偏置項引數 enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 15 [default = DEFAULT]; // The axis to interpret as "channels" when performing convolution. // Preceding dimensions are treated as independent inputs; // succeeding dimensions are treated as "spatial". // With (N, C, H, W) inputs, and axis == 1 (the default), we perform // N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for // groups g>1) filters across the spatial axes (H, W) of the input. // With (N, C, D, H, W) inputs, and axis == 1, we perform // N independent 3D convolutions, sliding (C/g)-channels // filters across the spatial axes (D, H, W) of the input. optional int32 axis = 16 [default = 1]; 卷積軸,預設通道(3D卷積中,有時序軸卷積情況) // Whether to force use of the general ND convolution, even if a specific // implementation for blobs of the appropriate number of spatial dimensions // is available. (Currently, there is only a 2D-specific convolution // implementation; for input blobs with num_axes != 2, this option is // ignored and the ND implementation will be used.) //是否強制使用一般的ND卷積,即使對於具有適當空間維數的blob有特定的實現。(目前只有2d特有的卷積實現;對於num_axes != 2的輸入blob,將忽略此選項,並使用ND卷積) optional bool force_nd_im2col = 17 [default = false]; }
卷積形式太多,一時難以收集全,先舉個例子,以後慢慢更新
例如在MobileNet中:
layer { name: "conv6_3/dwise" type: "Convolution" bottom: "conv6_3/expand/bn" top: "conv6_3/dwise" param { lr_mult: 1 decay_mult: 1 } convolution_param { num_output: 960 //輸出個數 bias_term: false //不使用bias項 pad: 1 //填充1個畫素 kernel_size: 3 //卷積核大小3*3 group: 960 //組個數 則一組個數:num_output/ group (必須整除) weight_filler { type: "msra" } engine: CAFFE } }