1. 程式人生 > >Amazon SageMaker 常見問題

Amazon SageMaker 常見問題

問:Amazon SageMaker 使用哪些演算法來生成模型?

Amazon SageMaker 包括一些內建演算法,例如線性迴歸演算法、邏輯迴歸演算法、k-means 叢集演算法、主成分分析演算法、因式分解機演算法、神經主題建模演算法、潛在狄利克雷分配演算法、梯度提高樹演算法、序列到序列演算法、預測時間序列 word2vec 和映象分類演算法等。Amazon SageMaker 還提供經過優化的 Apache MXNet、Tensorflow、Chainer 和 PyTorch 容器。此外,Amazon SageMaker 還支援根據記錄的規格通過 Docker 映象提供的自定義訓練演算法。

相關推薦

Amazon SageMaker 常見問題

問:Amazon SageMaker 使用哪些演算法來生成模型? Amazon SageMaker 包括一些內建演算法,例如線性迴歸演算法、邏輯迴歸演算法、k-means 叢集演算法、主成分分析演算法、因式分解機演算法、神經主題建模演算法、潛在狄利克雷分配演算

PyTorch 1.0 preview now available in Amazon SageMaker and the AWS Deep Learning AMIs

Amazon SageMaker and the AWS Deep Learning AMIs (DLAMI) now provide an easy way to evaluate the PyTorch 1.0 preview release. PyTorch 1.0 adds seam

How to use common workflows on Amazon SageMaker notebook instances

Amazon SageMaker notebook instances provide a scalable cloud based development environment to do data science and machine learning. This blog post

Segmenting brain tissue using Apache MXNet with Amazon SageMaker and AWS Greengrass ML Inference

In Part 1 of this blog post, we demonstrated how to train and deploy neural networks to automatically segment brain tissue from an MRI scan in a s

Amazon SageMaker Neural Topic Model now supports auxiliary vocabulary channel, new topic evaluation metrics, and training subsam

In this blog post, we introduce three new features of the Amazon SageMaker Neural Topic Model (NTM) that are designed to help improve user product

Accelerate model training using faster Pipe mode on Amazon SageMaker

Amazon SageMaker now comes with a faster Pipe mode implementation, significantly accelerating the speeds at which data can be streamed from Amazon

AWS Announces New Amazon SageMaker Capabilities and Enhancements

Amazon Web Services recently announced that users now have the ability to build an Amazon SageMaker notebook from the AWS Glue Console and then connect it

Training models with unequal economic error costs using Amazon SageMaker

Many companies are turning to machine learning (ML) to improve customer and business outcomes. They use the power of ML models built over “big dat

Amazon SageMaker AI Service

Amazon revealed its SageMaker AI service today, allowing its customers to train machine learning models at massive scale while keeping costs down. Amazon u

Amazon SageMaker automatic model tuning produces better models, faster

Amazon SageMaker recently released a feature that allows you to automatically tune the hyperparameter values of your machine learning model to pro

Predictive Data Science with Amazon SageMaker and a Data Lake on AWS

This Quick Start builds a data lake environment for building, training, and deploying machine learning (ML) models with Amazon SageMaker on the Am

Machine Learning with Amazon SageMaker and Cloudwick

Cloudwick’s Machine Learning with Amazon SageMaker Platform on Amazon Web Services (AWS) helps developers and business users of all skillsets leve

Amazon SageMaker Developer Resources

This tech talk introduces you to the collection of distributed streaming ML algorithms that come with Amazon SageMaker. You will learn about

Questions fréquentes (FAQ) sur Amazon SageMaker

Q : Quels algorithmes le service Amazon SageMaker utilise-t-il pour générer des modèles ? Amazon SageMaker comprend des algorithme

Amazon SageMaker Features

In just one click, you can access a fully managed machine learning notebook environment using the popular Jupyter open source notebook format.

Amazon SageMaker – Accelerating Machine Learning

Machine Learning is a pivotal technology for many startups and enterprises. Despite decades of investment and improvements, the process of develop

How to Build an AWS DeepLens Project with Amazon SageMaker

Amazon Web Services is Hiring. Amazon Web Services (AWS) is a dynamic, growing business unit within Amazon.com. We are currently hiring So

Amazon SageMaker Pricing

For building, training, and deploying your models on Amazon SageMaker, on-demand ML instances let you pay for machine learning compute capacity by

Types d'instances Amazon SageMaker

Amazon SageMaker fournit un large éventail de types d'instances optimisés pour différents cas d'utilisation de l'apprentissage automatiques (ML).

Amazon SageMaker – 加快機器學習程序

機器學習是許多初創公司和企業的關鍵技術。儘管經歷了數十年的投入和改進,開發、訓練和維護機器學習模型的過程仍然繁瑣且欠缺通用性。將機器學習技術整合到應用程式中的過程往往需要一個專家團隊進行為期數月的調整和修補,而且設定還不一致。企業和開發人員需要一個端到端、開發到生產的機器學習管道。