spark-shell --master yarn-client(異常已經解決)
[[email protected] ~]# spark-shell --master yarn-client
Warning: Master yarn-client is deprecated since 2.0. Please use master "yarn" with specified deploy mode instead.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17 /04/09 08:36:06 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/04/09 08:36:11 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
17/04/09 08:36:24 ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62 )
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2313)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:868)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:860)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:42)
at $line3.$read.<init>(<console>:44)
at $line3.$read$.<init>(<console>:48)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:105)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:68)
at org.apache.spark.repl.Main$.main(Main.scala:51)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/04/09 08:36:24 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
17/04/09 08:36:24 WARN MetricsSystem: Stopping a MetricsSystem that is not running
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2313)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:868)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:860)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
... 47 elided
<console>:14: error: not found: value spark
import spark.implicits._
^
<console>:14: error: not found: value spark
import spark.sql
^
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.1.0
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
YARN是正常執行的。
[[email protected] ~]# tail -50 /opt/hadoop-2.7.3/logs/yarn-root-resourcemanager-node1.log
at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:611)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601)
at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:421)
at org.apache.hadoop.yarn.util.FSDownload.copy(FSDownload.java:253)
at org.apache.hadoop.yarn.util.FSDownload.access$000(FSDownload.java:63)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:361)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:359)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:358)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:62)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Failing this attempt. Failing the application.
2017-04-09 08:36:23,640 INFO org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl: application_1491741099370_0002 State change from FINAL_SAVING to FAILED
2017-04-09 08:36:23,640 WARN org.apache.hadoop.yarn.server.resourcemanager.RMAuditLogger: USER=root OPERATION=Application Finished - Failed TARGET=RMAppManager RESULT=FAILURE DESCRIPTION=App failed with state: FAILED PERMISSIONS=Application application_1491741099370_0002 failed 2 times due to AM Container for appattempt_1491741099370_0002_000002 exited with exitCode: -1000
For more detailed output, check application tracking page:http://node1:8088/cluster/app/application_1491741099370_0002Then, click on links to logs of each attempt.
Diagnostics: File file:/tmp/spark-b465ad00-e218-48b0-a85a-c00907c5015f/__spark_libs__8229958103392672487.zip does not exist
java.io.FileNotFoundException: File file:/tmp/spark-b465ad00-e218-48b0-a85a-c00907c5015f/__spark_libs__8229958103392672487.zip does not exist
at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:611)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601)
at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:421)
at org.apache.hadoop.yarn.util.FSDownload.copy(FSDownload.java:253)
at org.apache.hadoop.yarn.util.FSDownload.access$000(FSDownload.java:63)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:361)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:359)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:358)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:62)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Failing this attempt. Failing the application. APPID=application_1491741099370_0002
2017-04-09 08:36:23,641 INFO org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary: appId=application_1491741099370_0002,name=Spark shell,user=root,queue=default,state=FAILED,trackingUrl=http://node1:8088/cluster/app/application_1491741099370_0002,appMasterHost=N/A,startTime=1491741381902,finishTime=1491741383639,finalStatus=FAILED,memorySeconds=475,vcoreSeconds=0,preemptedAMContainers=0,preemptedNonAMContainers=0,preemptedResources=<memory:0\, vCores:0>,applicationType=SPARK
2017-04-09 08:36:23,641 INFO org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.ParentQueue: Application removed - appId: application_1491741099370_0002 user: root leaf-queue of parent: root #applications: 0
2017-04-09 08:39:12,559 INFO org.apache.hadoop.yarn.server.resourcemanager.scheduler.AbstractYarnScheduler: Release request cache is cleaned up
[[email protected] ~]#
可能是spark-shell --master yarn-client
過時了,但是換成spark-shell --master yarn --deploy-mode client
,依然報錯。
[[email protected] ~]# spark-shell --master yarn --deploy-mode client
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17/04/09 09:23:36 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/04/09 09:23:41 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
17/04/09 09:24:11 ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2313)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:868)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:860)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:42)
at $line3.$read.<init>(<console>:44)
at $line3.$read$.<init>(<console>:48)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:105)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:68)
at org.apache.spark.repl.Main$.main(Main.scala:51)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/04/09 09:24:11 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
17/04/09 09:24:12 WARN MetricsSystem: Stopping a MetricsSystem that is not running
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2313)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:868)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:860)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
... 47 elided
<console>:14: error: not found: value spark
import spark.implicits._
^
<console>:14: error: not found: value spark
import spark.sql
^
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.1.0
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
百度了一下,有人說是“yarn-client模式出現的異常,暫時無解”
說可能是JDK8的問題。
但是還是沒有解決我的問題。
2017.4.10
這個簡單的問題,我竟然耗費了2天。今天晚上才意外發現自己又犯了一個低階錯誤,是spark-env.sh檔案中的HADOOP_CONF_DIR配置錯了。
重新修改一下:
export HADOOP_CONF_DIR=/opt/hadoop-2.7.3/etc/hadoop
[[email protected] conf]# spark-shell --master yarn-client
Warning: Master yarn-client is deprecated since 2.0. Please use master "yarn" with specified deploy mode instead.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17/04/10 10:26:42 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/04/10 10:26:49 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
17/04/10 10:28:12 WARN metastore.ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
Spark context Web UI available at http://192.168.11.201:4040
Spark context available as 'sc' (master = yarn, app id = application_1491750241097_0004).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.1.0
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
一些很低階的錯誤,讓人哭笑不得。可見“認真”二字多麼重要。
相關推薦
spark-shell --master yarn-client(異常已經解決)
[[email protected] ~]# spark-shell --master yarn-client Warning: Master yarn-client is deprecated since 2.0. Please use master
spark-shell on yarn 出錯(arn application already ended,might be killed or not able to launch applic)解決
今天想要將spark-shell 在yarn-client的狀態下 結果出錯: [[email protected] spark-1.0.1-bin-hadoop2]$ bin/spark-shell --master yarn-client Spark ass
關於spark-submit 使用yarn-client客戶端提交spark任務的問題
rpc連線超時 17/07/13 16:18:48 WARN NettyRpcEndpointRef: Error sending message [message = AMRegisted(enjoyor4,container_e02_1499931395900_0009
spark-shell啟動報錯:Yarn application has already ended! It might have been killed or unable to launch application master
name limits nor bsp closed pre opened 頁面 loading spark-shell不支持yarn cluster,以yarn client方式啟動 spark-shell --master=yarn --deploy-mode=cli
Crontab執行java/spark-shell/spark-submit 異常解決方法
現象: java/spark-shell/spark-submit 語句在linux shell中直接執行時沒有任何問題,但是放到crontab中就出異常,且異常一般都拋在一些基礎庫裡,讓人感覺非常莫名,比如這種: Traceback (most recent call last): &
Spark on yarn的兩種模式 yarn-cluster 和 yarn-client
然而 技術 負責 blog 作業 mage 申請 .com contain 從深層次的含義講,yarn-cluster和yarn-client模式的區別其實就是Application Master進程的區別,yarn-cluster模式下,driver運行在AM(Appli
解決spark-shell輸出日誌信息過多
log4 imp spa log4j ogg evel span height level import org.apache.log4j.Logger import org.apache.log4j.LevelLogger.getLogger("org").setLeve
解決SecureCRT下spark-shell中scala無法刪除問題
們的 知識庫 crt 解決方法 sdn html ace track 點擊 轉自:http://blog.csdn.net/huanbia/article/details/51318278 問題描述 當使用SecureCRT來打開Spark-shell的時候,有時
Spark Yarn-cluster與Yarn-client
-s 生成 med apache 分享 多個 submit cat 方便 總覽二者 在Spark中,有Yarn-Client和Yarn-Cluster兩種模式可以運行在Yarn上,通常Yarn-Cluster適用於生產環境,而Yarn-Clientr更適用於交互,調試模式,
以yarn client和分散式叢集方式執行spark-2.3.2-bin-hadoop2.6
一以分散式叢集執行 修改配置檔案/hadoop_opt/spark-2.3.2-bin-hadoop2.6/conf/spark-env.sh export HADOOP_CONF_DIR=/hadoop_opt/hadoop-2.6.1/etc/hadoop expo
在Yarn上執行spark-shell和spark-sql命令列
spark-shell On Yarn 如果你已經有一個正常執行的Hadoop Yarn環境,那麼只需要下載相應版本的Spark,解壓之後做為Spark客戶端即可。 需要配置Yarn的配置檔案目錄,export HADOOP_CONF_DIR=/etc/hadoop/conf &n
spark on yarn任務提交緩慢解決
1.為什麼要讓執行時Jar可以從yarn端訪問spark2以後,原有lib目錄下的大JAR包被分散成多個小JAR包,原來的spark-assembly-*.jar已經不存在 每一次我們執行的時候,如果沒有指定 spark.yarn.archive or spark.yarn.jars Spark將在安裝路徑
Spark:Yarn-Cluster和Yarn-Client的區別
0 首先注意的概念 ResourceManager:是叢集所有應用程式的資源管理器,能夠管理叢集的計算資源併為每個Application分配,它是一個純粹的排程器。 NodeManager:是每一臺slave機器的代理,執行應用程式,並監控應用程式的資源使用情況。 Ap
spark-2.3.2-bin-hadoop2.6執行在yarn client上
修改配置檔案/hadoop_opt/spark-2.3.2-bin-hadoop2.6/conf/spark-env.sh export HADOOP_CONF_DIR=/hadoop_opt/hadoop-2.6.1/etc/hadoop export J
Spark中yarn模式兩種提交任務方式(yarn-client與yarn-cluster)
Spark可以和Yarn整合,將Application提交到Yarn上執行,和StandAlone提交模式一樣,Yarn也有兩種提交任務的方式。 1.yarn-client提交任務方式 配置 在client節點配置中spark-en
hive on spark通過YARN-client提交任務不成功
在Hive on spark中 設定spark.master 為 yarn-client , 提交HiveQL任務到yarn上執行,發現任務無法執行 輸出一下錯誤: 可以看到 Hive on S
Spark任務提交 yarn-cluster模式 解決jvm記憶體溢位問題 以及簡單概述jdk7方法區和jdk8元空間
yarn-cluster 提價任務流程 1、提交方式 ./spark-submit --master yarn --deploy-mode cluster --class org.apache.spark.examples.SparkPi ../lib/spark-exampl
Spark troubleshooting yarn-client 網絡卡流量激增
一、 yarn-client模式原理 1、執行命令 ./spark-submit --master yarn --class org.apache.spark.examples.SparkPi ../lib/spark-examples-1.6.0-hadoop2.6.0.jar
27課 :SPARK 執行在yarn資源排程框架 client 、cluster方式 !!
分散式叢集 [email protected]:/usr/local/hadoop-2.6.0/etc/hadoop# vi /etc/hosts 127.0.0.1 localhost 192.168.189.1 master 192.168.189
Spark下Yarn-Cluster和Yarn-Client的區別
0 首先注意的概念 ResourceManager:是叢集所有應用程式的資源管理器,能夠管理叢集的計算資源併為每個Application分配,它是一個純粹的排程器。 NodeManager:是每一臺slave機器的代理,執行應用程式,並監控應用程式的資源使用