Pandas.DataFrame刪除行和列
本文通過一個csv例項檔案來展示如何刪除Pandas.DataFrame的行和列
資料檔名為:example.csv
內容為:
|date|spring|summer|autumn|winter|
|----|
|2000|12.2338809|16.90730113|15.69238313|14.08596223|
|2001|12.84748057|16.75046873|14.51406637| 13.5037456
|2002|13.558175|17.2033926|15.6999475 |13.23365247
|2003|12.6547247|16.89491533|15.6614647 |12.84347867
|2004|13.2537298|17.04696657|15.20905377| 14.3647912
|2005|13.4443049|16.7459822|16.62218797 |11.61082257
|2006|13.50569567|16.83357857| 15.4979282 |12.19934363
|2007|13.48852623|16.66773283| 15.81701437 |13.7438216
|2008|13.1515319|16.48650693 |15.72957287 |12.93233587
|2009|13.45771543|16.63923783 |18.26017997| 12.65315943
|2010|13.1945485|16.7286889|15.42635267 |13.8833583|
|2011|14.34779417|16.68942103 |14.17658043 |12.36654197
|2012|13.6050867|17.13056773 |14.71796777 |13.29255243
|2013|13.02790787|17.38619343 |16.20345497 |13.18612133
|2014|12.74668163|16.54428687|14.7367682|12.87065125|
|2015|13.465904|16.50612317 |12.44243663| 11.0181384
|season|spring|summer |autumn| winter|
|slope|0.0379691374|-0.01164689167 |-0.07913844113| -0.07765274553
刪除行
In [1]:
import numpy as np
import pandas as pd
odata = pd.read_csv('example.csv')
odata
Out[1]:
date spring summer autumn winter
0 2000 12.2338809 16.9073011333 15.6923831333 14.0859622333
1 2001 12.8474805667 16.7504687333 14.5140663667 13.5037456
2 2002 13.558175 17.2033926 15.6999475 13.2336524667
3 2003 12.6547247 16.8949153333 15.6614647 12.8434786667
4 2004 13.2537298 17.0469665667 15.2090537667 14.3647912
5 2005 13.4443049 16.7459822 16.6221879667 11.6108225667
6 2006 13.5056956667 16.8335785667 15.4979282 12.1993436333
7 2007 13.4885262333 16.6677328333 15.8170143667 13.7438216
8 2008 13.1515319 16.4865069333 15.7295728667 12.9323358667
9 2009 13.4577154333 16.6392378333 18.2601799667 12.6531594333
10 2010 13.1945485 16.7286889 15.4263526667 13.8833583
11 2011 14.3477941667 16.6894210333 14.1765804333 12.3665419667
12 2012 13.6050867 17.1305677333 14.7179677667 13.2925524333
13 2013 13.0279078667 17.3861934333 16.2034549667 13.1861213333
14 2014 12.7466816333 16.5442868667 14.7367682 12.8706512467
15 2015 13.465904 16.5061231667 12.4424366333 11.0181384
16 season spring summer autumn winter
17 slope 0.037969137402 -0.0116468916667 -0.0791384411275 -0.0776527455294
想要刪除最後兩行
.drop()方法如果不設定引數inplace=True,則只能在生成的新資料塊中實現刪除效果,而不能刪除原有資料塊的相應行。
In [2]:
data = odata.drop([16,17])
odata
Out[2]:
date spring summer autumn winter
0 2000 12.2338809 16.9073011333 15.6923831333 14.0859622333
1 2001 12.8474805667 16.7504687333 14.5140663667 13.5037456
2 2002 13.558175 17.2033926 15.6999475 13.2336524667
3 2003 12.6547247 16.8949153333 15.6614647 12.8434786667
4 2004 13.2537298 17.0469665667 15.2090537667 14.3647912
5 2005 13.4443049 16.7459822 16.6221879667 11.6108225667
6 2006 13.5056956667 16.8335785667 15.4979282 12.1993436333
7 2007 13.4885262333 16.6677328333 15.8170143667 13.7438216
8 2008 13.1515319 16.4865069333 15.7295728667 12.9323358667
9 2009 13.4577154333 16.6392378333 18.2601799667 12.6531594333
10 2010 13.1945485 16.7286889 15.4263526667 13.8833583
11 2011 14.3477941667 16.6894210333 14.1765804333 12.3665419667
12 2012 13.6050867 17.1305677333 14.7179677667 13.2925524333
13 2013 13.0279078667 17.3861934333 16.2034549667 13.1861213333
14 2014 12.7466816333 16.5442868667 14.7367682 12.8706512467
15 2015 13.465904 16.5061231667 12.4424366333 11.0181384
16 season spring summer autumn winter
17 slope 0.037969137402 -0.0116468916667 -0.0791384411275 -0.0776527455294
In [3]:
data
Out[3]:
date spring summer autumn winter
0 2000 12.2338809 16.9073011333 15.6923831333 14.0859622333
1 2001 12.8474805667 16.7504687333 14.5140663667 13.5037456
2 2002 13.558175 17.2033926 15.6999475 13.2336524667
3 2003 12.6547247 16.8949153333 15.6614647 12.8434786667
4 2004 13.2537298 17.0469665667 15.2090537667 14.3647912
5 2005 13.4443049 16.7459822 16.6221879667 11.6108225667
6 2006 13.5056956667 16.8335785667 15.4979282 12.1993436333
7 2007 13.4885262333 16.6677328333 15.8170143667 13.7438216
8 2008 13.1515319 16.4865069333 15.7295728667 12.9323358667
9 2009 13.4577154333 16.6392378333 18.2601799667 12.6531594333
10 2010 13.1945485 16.7286889 15.4263526667 13.8833583
11 2011 14.3477941667 16.6894210333 14.1765804333 12.3665419667
12 2012 13.6050867 17.1305677333 14.7179677667 13.2925524333
13 2013 13.0279078667 17.3861934333 16.2034549667 13.1861213333
14 2014 12.7466816333 16.5442868667 14.7367682 12.8706512467
15 2015 13.465904 16.5061231667 12.4424366333 11.0181384
如果inplace=True則原有資料塊的相應行被刪除
In [4]:
odata.drop(odata.index[[16,17]],inplace=True)
odata
Out[4]:
date spring summer autumn winter
0 2000 12.2338809 16.9073011333 15.6923831333 14.0859622333
1 2001 12.8474805667 16.7504687333 14.5140663667 13.5037456
2 2002 13.558175 17.2033926 15.6999475 13.2336524667
3 2003 12.6547247 16.8949153333 15.6614647 12.8434786667
4 2004 13.2537298 17.0469665667 15.2090537667 14.3647912
5 2005 13.4443049 16.7459822 16.6221879667 11.6108225667
6 2006 13.5056956667 16.8335785667 15.4979282 12.1993436333
7 2007 13.4885262333 16.6677328333 15.8170143667 13.7438216
8 2008 13.1515319 16.4865069333 15.7295728667 12.9323358667
9 2009 13.4577154333 16.6392378333 18.2601799667 12.6531594333
10 2010 13.1945485 16.7286889 15.4263526667 13.8833583
11 2011 14.3477941667 16.6894210333 14.1765804333 12.3665419667
12 2012 13.6050867 17.1305677333 14.7179677667 13.2925524333
13 2013 13.0279078667 17.3861934333 16.2034549667 13.1861213333
14 2014 12.7466816333 16.5442868667 14.7367682 12.8706512467
15 2015 13.465904 16.5061231667 12.4424366333 11.0181384
刪除列
del方法
In [5]:
del odata['date']
odata
Out[5]:
spring summer autumn winter
0 12.2338809 16.9073011333 15.6923831333 14.0859622333
1 12.8474805667 16.7504687333 14.5140663667 13.5037456
2 13.558175 17.2033926 15.6999475 13.2336524667
3 12.6547247 16.8949153333 15.6614647 12.8434786667
4 13.2537298 17.0469665667 15.2090537667 14.3647912
5 13.4443049 16.7459822 16.6221879667 11.6108225667
6 13.5056956667 16.8335785667 15.4979282 12.1993436333
7 13.4885262333 16.6677328333 15.8170143667 13.7438216
8 13.1515319 16.4865069333 15.7295728667 12.9323358667
9 13.4577154333 16.6392378333 18.2601799667 12.6531594333
10 13.1945485 16.7286889 15.4263526667 13.8833583
11 14.3477941667 16.6894210333 14.1765804333 12.3665419667
12 13.6050867 17.1305677333 14.7179677667 13.2925524333
13 13.0279078667 17.3861934333 16.2034549667 13.1861213333
14 12.7466816333 16.5442868667 14.7367682 12.8706512467
15 13.465904 16.5061231667 12.4424366333 11.0181384
.pop()方法
.pop方法可以將所選列從原資料塊中彈出,原資料塊不再保留該列
In [6]:
spring = odata.pop('spring')
spring
Out[6]:
0 12.2338809
1 12.8474805667
2 13.558175
3 12.6547247
4 13.2537298
5 13.4443049
6 13.5056956667
7 13.4885262333
8 13.1515319
9 13.4577154333
10 13.1945485
11 14.3477941667
12 13.6050867
13 13.0279078667
14 12.7466816333
15 13.465904
Name: spring, dtype: object
In [7]:
odata
Out[7]:
summer autumn winter
0 16.9073011333 15.6923831333 14.0859622333
1 16.7504687333 14.5140663667 13.5037456
2 17.2033926 15.6999475 13.2336524667
3 16.8949153333 15.6614647 12.8434786667
4 17.0469665667 15.2090537667 14.3647912
5 16.7459822 16.6221879667 11.6108225667
6 16.8335785667 15.4979282 12.1993436333
7 16.6677328333 15.8170143667 13.7438216
8 16.4865069333 15.7295728667 12.9323358667
9 16.6392378333 18.2601799667 12.6531594333
10 16.7286889 15.4263526667 13.8833583
11 16.6894210333 14.1765804333 12.3665419667
12 17.1305677333 14.7179677667 13.2925524333
13 17.3861934333 16.2034549667 13.1861213333
14 16.5442868667 14.7367682 12.8706512467
15 16.5061231667 12.4424366333 11.0181384
.drop()方法
drop方法既可以保留原資料塊中的所選列,也可以刪除,這取決於引數inplace
In [8]:
withoutSummer = odata.drop(['summer'],axis=1)
withoutSummer
Out[8]:
autumn winter
0 15.6923831333 14.0859622333
1 14.5140663667 13.5037456
2 15.6999475 13.2336524667
3 15.6614647 12.8434786667
4 15.2090537667 14.3647912
5 16.6221879667 11.6108225667
6 15.4979282 12.1993436333
7 15.8170143667 13.7438216
8 15.7295728667 12.9323358667
9 18.2601799667 12.6531594333
10 15.4263526667 13.8833583
11 14.1765804333 12.3665419667
12 14.7179677667 13.2925524333
13 16.2034549667 13.1861213333
14 14.7367682 12.8706512467
15 12.4424366333 11.0181384
In [9]:
odata
Out[9]:
summer autumn winter
0 16.9073011333 15.6923831333 14.0859622333
1 16.7504687333 14.5140663667 13.5037456
2 17.2033926 15.6999475 13.2336524667
3 16.8949153333 15.6614647 12.8434786667
4 17.0469665667 15.2090537667 14.3647912
5 16.7459822 16.6221879667 11.6108225667
6 16.8335785667 15.4979282 12.1993436333
7 16.6677328333 15.8170143667 13.7438216
8 16.4865069333 15.7295728667 12.9323358667
9 16.6392378333 18.2601799667 12.6531594333
10 16.7286889 15.4263526667 13.8833583
11 16.6894210333 14.1765804333 12.3665419667
12 17.1305677333 14.7179677667 13.2925524333
13 17.3861934333 16.2034549667 13.1861213333
14 16.5442868667 14.7367682 12.8706512467
15 16.5061231667 12.4424366333 11.0181384
當inplace=True時.drop()執行內部刪除,不返回任何值,原資料發生改變
In [10]:
withoutWinter = odata.drop(['winter'],axis=1,inplace=True)
type(withoutWinter)
Out[10]:
NoneType
In [11]:
odata
Out[11]:
summer autumne
0 16.9073011333 15.6923831333
1 16.7504687333 14.5140663667
2 17.2033926 15.6999475
3 16.8949153333 15.6614647
4 17.0469665667 15.2090537667
5 16.7459822 16.6221879667
6 16.8335785667 15.4979282
7 16.6677328333 15.8170143667
8 16.4865069333 15.7295728667
9 16.6392378333 18.2601799667
10 16.7286889 15.4263526667
11 16.6894210333 14.1765804333
12 17.1305677333 14.7179677667
13 17.3861934333 16.2034549667
14 16.5442868667 14.7367682
15 16.5061231667 12.4424366333
總結,不論是行刪除還是列刪除,也不論是原資料刪除,還是輸出新變數刪除,.drop()的方法都能達到目的,為了方便好記,熟練操作,所以應該儘量多使用.drop()方法
相關推薦
Pandas.DataFrame刪除行和列
本文通過一個csv例項檔案來展示如何刪除Pandas.DataFrame的行和列資料檔名為:example.csv內容為:|date|spring|summer|autumn|winter||----||2000|12.2338809|16.90730113|15.69238313|14.08596223||
pandas dataframe 新增行和列
import numpy as np import pandas as pd df=pd.DataFrame(np.random.randn(3,4),columns=list("ABCD"),index=list("xyz")) # print(df) res1=df.apply(lambda
python中pandas庫中DataFrame對行和列的操作使用方法
用pandas中的DataFrame時選取行或列:import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data =
Grid Compression(刪除行和列)
問題 B: Grid Compression 時間限制: 1 Sec 記憶體限制: 128 MB 題目描述 There is a grid of squares with H horizontal rows and W vertical colu
對dataframe的行和列進行遍歷和修改
首先先定一個這樣的字典,然後我們用不同的方法對其遍歷和修改 字典df df=pd.DataFrame({"A":[1,2,3,4],"B":[5,6,7,8],"C":[1,1,1,1]}) A B C 0 1 5 1 1 2 6 1 2 3 7 1 3
python中pandas.DataFrame對行與列求和及新增新行與列示例
本文介紹的是python中pandas.DataFrame對行與列求和及新增新行與列的相關資料,下面話不多說,來看看詳細的介紹吧。 方法如下: 匯入模組: ? 1 2 3 from pandas import DataFrame import panda
Python中pandas dataframe刪除一行或一列:drop函式
用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 在這裡預設:axis=0,指刪除index,因此刪除columns時要指定axis=1; inplace=False,預設該刪除操作不
Pandas入門基礎(二):DataFrame的行、列與資料型別
建立DataFrame資料: data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 20
Pandas基礎(二):DataFrame的行、列與資料型別
建立DataFrame資料: data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002, 2003],
HTML動態增加和刪除表格的行和列
<!doctype html> <html> <head> <!--動態生成指定行數和列數的可編輯表格--> <style> </style> <script> function addrow(){ var c=docum
js動態刪除table表的指定行和列
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html
pandas 獲取數據幀DataFrame的行、列數
das pre row 技術分享 mage object 獲取數據 inf shape 1、創建數據幀 import pandas as pd df = pd.DataFrame([[1, ‘A‘, ‘3%‘ ], [2, ‘B‘]], index=[‘row_0‘
JS 合並單元格相同內容行和列
del nbsp ext 合並單元格 color class doc nal div <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <HTML> <HEAD&
Excel刪除空白行和列
image last fun solid ast ack color tro ont Sub DeleteEmptyRows() Dim LastRow As Long, r As Long LastRow = ActiveSheet.UsedRange.Rows.Coun
Linux提取不匹配字符串的行和列(awk函數)
div ont 字符串 pre IT int nan span http 如下圖所示,想把含有‘-nan’字符串的行提取出來 則用到awk函數,命令行如下: awk ‘{if($3!="-nan"){print $3}}‘ CHB_vs_
C#中關於DataGridView行和列的背景色-前景色設置
ring strong style屬性 背景 car gray bind etl pin 關於DataGridView行和列的背景色-前景色設置 1.設定DataGridView全部單元格的Style DataGridView內所有單元格的Style變更,可以使用Data
Excel表中如何同時鎖定行和列
info 固定 tro nbsp img image 我們 三種 str 鎖定行列信息欄,需要用到的是視圖工具欄,點擊視圖工具欄我們顯而易見的看到了凍結窗口一欄,通過凍結窗口來鎖定行及列信息欄; 第一種是凍結首行 第二種是凍結首列 通上 第三種是同時凍結前幾
js 遍歷行和列
tag pre tex innertext color 遍歷 bsp tab ext var table = document.getElementsByTagName("table")[0]; //遍歷列 for (var i = 0; i <
如何叠代pandas dataframe的行
csdn span ring erl ble .net sdn test uil from:https://blog.csdn.net/tanzuozhev/article/details/76713387 How to iterate over rows in a Da
Pandas DataFrame 資料選取和過濾
This would allow chaining operations like: pd.read_csv('imdb.txt') .sort(columns='year') .filter(lambda x: x['year']>1990) # <---this is missin