【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗三:按鍵模組② — 點選與長點選
實驗三:按鍵模組② — 點選與長點選
實驗二我們學過按鍵功能模組的基礎內容,其中我們知道按鍵功能模組有如下操作:
l 電平變化檢測;
l 過濾抖動;
l 產生有效按鍵。
實驗三我們也會z執行同樣的事情,不過卻是產生不一樣的有效按鍵:
l 按下有效(點選);
l 長按下有效(長點選)。
圖3.1 按下有效,時序示意圖。
圖3.2 長按下有效,時序示意圖。
如圖3.1所示,按下有效既是“點選”,當按鍵被按下並且消抖完畢以後,isSClick訊號就有被拉高一個時鐘(Short Click)。換之,長按下有效也是俗稱為的“長點選”,如圖3.2所示,當按鍵被按下並且消抖完畢以後,如果按鍵3秒之內都沒有被釋放,那麼isLClick訊號就會拉高一個時鐘(Long Click)。
圖3.3 實驗三的建模圖。
如圖3.3所示,那是實驗三的建模圖,同樣按鍵功能模組有一位KEY輸入,並且連線至按鍵資源,然後它有兩位LED輸出,並且連線至2位LED資源。至於多按鍵功能模組的具體內容,讓我們來看程式碼吧:
key_funcmod.v
1. module key_funcmod
2. (
3. input CLOCK, RESET,
4. input KEY,
5. output [1:0]LED
6. );
以上內容為相關的出入端宣告。
7. parameter T10MS = 26'd500_000; // Deboucing time
8. parameter T3S = 28'd150_000_000; // Long press time
9.
10. /*****************************************/ //sub
11.
12. reg F2,F1;
13.
14. always @ ( posedge CLOCK or negedge RESET )
15. if( !RESET )
16. { F2, F1 } <= 2'b11;
17. else
18. { F2, F1 } <= { F1, KEY };
19.
20. /*****************************************/ //core
21.
22. wire isH2L = ( F2 == 1 && F1 == 0 );
23. wire isL2H = ( F2 == 0 && F1 == 1 );
以上內容為相關的常量宣告,周邊操作以及即時宣告。第12~18行是電平狀態檢測的周邊操作。第22~23行是按下事件與釋放事件的即時宣告。
24. reg [3:0]i;
25. reg isLClick,isSClick;
26. reg [1:0]isTag;
27. reg [27:0]C1;
28.
29. always @ ( posedge CLOCK or negedge RESET )
30. if( !RESET )
31. begin
32. i <= 4'd0;
33. isLClick <= 1'd0;
34. isSClick <= 1'b0;
35. isTag <= 2'd0;
36. C1 <= 28'd0;
37. end
38. else
以上內容為相關的暫存器宣告以及復位操作。i用作指向步驟,isLClick與isSClick同是標示暫存器,分別是長按下有效與按下有效。isTag用來判定那種有效按鍵,C1用來計數。
39. case(i)
40.
41. 0: // Wait H2L
42. if( isH2L ) i <= i + 1'b1;
43.
44. 1: // H2L debouce
45. if( C1 == T10MS -1 ) begin C1 <= 28'd0; i <= i + 1'b1; end
46. else C1 <= C1 + 1'b1;
47.
48. 2: // Key S Check
49. if( isL2H ) begin isTag <= 2'd1; C1 <= 28'd0; i <= i + 1'b1; end
50. else if( {F2,F1} == 2'b00 && C1 >= T3S -1 ) begin isTag <= 2'd2; C1 <= 28'd0; i <= i + 1'd1; end
51. else C1 <= C1 + 1'b1;
52.
53. 3: // S Trigger (pree up)
54. if( isTag == 2'd1 ) begin isSClick <= 1'b1; i <= i + 1'b1; end
55. else if( isTag == 2'd2 ) begin isLClick <= 1'b1; i <= i + 1'b1; end
56.
57. 4: // S Trigger (pree down)
58. begin { isLClick,isSClick } <= 2'b00; i <= i + 1'b1; end
59.
60. 5: // L2H deboce check
61. if( isTag == 2'd1 ) begin isTag <= 2'd0; i <= i + 2'd2; end
62. else if( isTag == 2'd2 ) begin isTag <= 2'd0; i <= i + 1'b1; end
63.
64. 6: // Wait L2H
65. if( isL2H )i <= i + 1'b1;
66.
67. 7: // L2H debonce
68. if( C1 == T10MS -1 ) begin C1 <= 28'd0; i <= 4'd0; end
69. else C1 <= C1 + 1'b1;
70.
71. endcase
以上內容為核心操作,至於核心的操作過程如下:
步驟0,等待按下事件;
步驟1,過濾又高變低所產生的抖動;
步驟2,檢測那種有效按鍵,如果3秒以內發生釋放事件就為isTag賦值1;反之,如果持續3秒低電平則為isTag賦值2;
步驟3~4,根據 Mode 的內容產生不同有效按鍵的高脈衝,isTag為1是“點選”isSClick,isTag為2則是“長點選”isLClick。
步驟5,用來檢測釋放事件,如果之前發生“點選”就直接跳向步驟7。反之,如果之前發生“長點選”就進入步驟6。
步驟6,等待釋放事件(長點選有效)。
步驟7, 過濾又低變高所產生的抖動,然後返回步驟0。
72.
73. /*************************/ // sub demo
74.
75. reg [1:0]D1;
76.
77. always @ ( posedge CLOCK or negedge RESET )
78. if( !RESET )
79. D1 <= 2'b00;
80. else if( isLClick )
81. D1[1] <= ~D1[1];
82. else if( isSClick )
83. D1[0] <= ~D1[0];
84.
85. /***************************/
86.
87. assign LED = D1;
88.
89. endmodule
以上內容為演示用的周邊操作,它根據那種有效按鍵就翻轉那位D1暫存器。第87行則是輸出驅動宣告。編譯完成便下載程式。
我們會發現,第一次按下 <KEY2> 3秒不放會點亮 LED[1],換之按下 <KEY2> 不到3秒便釋放則會點亮 LED[0]。第二次按下 <KEY2> 3秒不放會消滅 LED[0],按下 <KEY2> 不到3秒便釋放會消滅 LED[0]。如此一來,實驗三已經成
細節一: 精密控時
2:
if( isL2H ) begin S <= 2'd1; C1 <= 28'd0; i <= i + 1'b1; end
else if( {F2,F1} == 2'b00 && C1 >= T3S -1 ) begin S <= 2'd2; C1 <= 28'd0; i <= i + 1'd1; end
else C1 <= C1 + 1'b1;
3:
if( S == 2'd1 ) begin isSClick <= 1'b1; i <= i + 1'b1; end
else if( S == 2'd2 ) begin isLClick <= 1'b1; i <= i + 1'b1; end
4:
begin { isLClick,isSClick } <= 2'b00; i <= i + 1'b1; end
5:
if( S == 2'd1 ) begin S <= 2'd0; i <= i + 2'd2; end
else if( S== 2'd2 ) begin S <= 2'd0; i <= i + 1'b1; end
6:
if( isL2H )i <= i + 1'b1;
7:
if( C1 == T10MS -1 ) begin C1 <= 28'd0; i <= 4'd0; end
else C1 <= C1 + 1'b1;
程式碼3.1
程式碼3.1是 key_funcmod 的部分程式碼,分別是步驟2~7。如果筆者是精密控時狂人,事實上程式碼3.1還可以進一步細化,然而還有什麼可以細化的地方呢?如程式碼3.1所示,距離步驟7(消抖)之前,共有步驟2~6等5個時鐘所消耗。如果也考慮消抖時間之內,然而步驟7 修改為if( C1 == T10MS -1 -5 ) 是行不通,因為兩種有效按鍵都有不通的情況。
如果 isTag 為1,步驟5會直接跳向步驟7,步驟7的消抖只要加入步驟2~5所消耗的4個時鐘。如果isTag為2,那麼步驟5會前進步驟6,然後乖乖等待釋放事件,期間沒消耗而外的時鐘。為此,步驟7可以這樣修改,結果如程式碼3.2所示:
5:
if( S == 2'd1 ) begin i <= i + 2'd2; end
else if( S == 2'd2 ) begin i <= i + 1'b1; end
6:
if( isL2H )i <= i + 1'b1;
7:
if( Mode == 2'd1 && C1 == T10MS -1 -4) begin Mode <= 2'd0; C1 <= 28'd0; i <= 4'd0; end
else if( Mode == 2'd2 && C1 == T10MS -1 ) begin Mode <= 2'd0; C1 <= 28'd0; i <= 4'd0; end
else C1 <= C1 + 1'b1;
程式碼3.2
如程式碼3.2所示,步驟5被拿掉 isTag <= 2'd0 操作,然後步驟7稍微修改一下消抖過程。如果 isTag 為1,那麼消抖多考慮 4 個而外的時鐘消耗。反之,如果 isTag 為 2,那麼消抖過程照常。
細節二:完整的按鍵功能模組
圖3.4 完整的按鍵功能模組。
如圖3.4所示,那是完整的按鍵功能模組,它有一位連結至按鍵資源的KEYn訊號,它也有一組兩位的溝通訊號Trig。Trig[1]產生“點選”的個高脈衝,Trig[0]產生“長點選”的個高脈衝。
key_funcmod.v
1. module key_funcmod
2. (
3. input CLOCK, RESET,
4. input KEY,
5. output [1:0]oTrig
6. );
7. parameter T10MS = 26'd500_000; // Deboucing time
8. parameter T3S = 28'd150_000_000; // Long press time
9.
10. /*****************************************/ //sub
11.
12. reg F2,F1;
13.
14. always @ ( posedge CLOCK or negedge RESET )
15. if( !RESET )
16. { F2, F1 } <= 2'b11;
17. else
18. { F2, F1 } <= { F1, KEY };
19.
20. /*****************************************/ //core
21.
22. wire isH2L = ( F2 == 1 && F1 == 0 );
23. wire isL2H = ( F2 == 0 && F1 == 1 );
24. reg [3:0]i;
25. reg isLClick,isSClick;
26. reg [1:0]isTag;
27. reg [27:0]C1;
28.
29. always @ ( posedge CLOCK or negedge RESET )
30. if( !RESET )
31. begin
32. i <= 4'd0;
33. isLClick <= 1'd0;
34. isSClick <= 1'b0;
35. isTag <= 2'd0;
36. C1 <= 28'd0;
37. end
38. else
39. case(i)
40.
41. 0: // Wait H2L
42. if( isH2L ) i <= i + 1'b1;
43.
44. 1: // H2L debouce
45. if( C1 == T10MS -1 ) begin C1 <= 28'd0; i <= i + 1'b1; end
46. else C1 <= C1 + 1'b1;
47.
48. 2: // Key Tag Check
49. if( isL2H ) begin isTag <= 2'd1; C1 <= 28'd0; i <= i + 1'b1; end
50. else if( {F2,F1} == 2'b00 && C1 >= T3S -1 ) begin isTag <= 2'd2; C1 <= 28'd0; i <= i + 1'd1; end
51. else C1 <= C1 + 1'b1;
52.
53. 3: // Tag Trigger (pree up)
54. if( isTag == 2'd1 ) begin isSClick <= 1'b1; i <= i + 1'b1; end
55. else if( isTag == 2'd2 ) begin isLClick <= 1'b1; i <= i + 1'b1; end
56.
57. 4: // Tag Trigger (pree down)
58. begin { isLClick,isSClick } <= 2'b00; i <= i + 1'b1; end
59.
60. 5: // L2H deboce check
61. if( isTag == 2'd1 ) begin S <= 2'd0; i <= i + 2'd2; end
62. else if( isTag == 2'd2 ) begin S <= 2'd0; i <= i + 1'b1; end
63.
64. 6: // Wait L2H
65. if( isL2H )i <= i + 1'b1;
66.
67. 7: // L2H debonce
68. if( C1 == T10MS -1 ) begin C1 <= 28'd0; i <= 4'd0; end
69. else C1 <= C1 + 1'b1;
70.
71. endcase
72.
73. /*************************/
74.
75. assign oTrig = { isSClick,isLClick };
76.
77. endmodule
相關推薦
【黑金原創教程】【FPGA那些事兒-驅動篇I 】【實驗一】流水燈模組
實驗一:流水燈模組 對於發展商而言,動土儀式無疑是最重要的任務。為此,流水燈實驗作為低階建模II的動土儀式再適合不過了。廢話少說,我們還是開始實驗吧。 圖1.1 實驗一建模圖。 如圖1.1 所示,實驗一有名為 led_funcmod的功能模組。如果無視環境訊號(時鐘訊號還有復位訊號),該功能模組只有
【黑金原創教程】【FPGA那些事兒-驅動篇I 】連載導讀
前言: 無數晝夜的來回輪替以後,這本《驅動篇I》終於編輯完畢了,筆者真的感動到連鼻涕也流下來。所謂驅動就是認識硬體,還有前期建模。雖然《驅動篇I》的硬體都是我們熟悉的老友記,例如UART,VGA等,但是《驅動篇I》貴就貴在建模技巧的昇華,亦即低階建模II。 話說低階建模II,讀過《建模篇》的朋友多少也會面
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗三:按鍵模組② — 點選與長點選
實驗三:按鍵模組② — 點選與長點選 實驗二我們學過按鍵功能模組的基礎內容,其中我們知道按鍵功能模組有如下操作: l 電平變化檢測; l 過濾抖動; l 產生有效按鍵。 實驗三我們也會z執行同樣的事情,不過卻是產生不一樣的有效按鍵: l 按下有效(點選); l 長按下有效(長點選)。 圖3
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗二:按鍵模組①
實驗二:按鍵模組① - 消抖 按鍵消抖實驗可謂是經典中的經典,按鍵消抖實驗雖曾在《建模篇》出現過,而且還惹來一堆麻煩。事實上,筆者這是在刁難各位同學,好讓對方的慣性思維短路一下,但是慘遭口水攻擊 ... 面對它,筆者宛如被甩的男人,對它又愛又恨。不管怎麼樣,如今 I’ll be back,筆者再也不會重複一
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗六:數碼管模組
實驗六:數碼管模組 有關數碼管的驅動,想必讀者已經學爛了 ... 不過,作為學習的新儀式,再爛的東西也要溫故知新,不然學習就會不健全。黑金開發板上的數碼管資源,由始至終都沒有改變過,筆者因此由身懷念。為了點亮多位數碼管從而顯示數字,一般都會採用動態掃描,然而有關動態掃描的資訊請怒筆者不再重複。在此,同樣也是
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗四:按鍵模組③ — 單擊與雙擊
實驗四:按鍵模組③ — 單擊與雙擊 實驗三我們建立了“點選”還有“長點選”等有效按鍵的多功能按鍵模組。在此,實驗四同樣也是建立多功能按鍵模組,不過卻有不同的有效按鍵。實驗四的按鍵功能模組有以下兩項有效按鍵: l 單擊(按下有效); l 雙擊(連續按下兩下有效)。 圖4.1 單擊有效按鍵,時序示意圖
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗五:按鍵模組④ — 點選,長點選,雙擊
實驗五:按鍵模組④ — 點選,長點選,雙擊 實驗二至實驗四,我們一共完成如下有效按鍵: l 點選(按下有效) l 點選(釋放有效) l 長擊(長按下有效) l 雙擊(連續按下有效) 然而,不管哪個實驗都是隻有兩項“功能”的按鍵模組而已,如今我們要建立三項“功能”的按鍵模組,亦即點選(按下有效),長
【黑金原創教程】【FPGA那些事兒-驅動篇I 】原創教程連載導讀【連載完成,共二十九章】
前言: 無數晝夜的來回輪替以後,這本《驅動篇I》終於編輯完畢了,筆者真的感動到連鼻涕也流下來。所謂驅動就是認識硬體,還有前期建模。雖然《驅動篇I》的硬體都是我們熟悉的老友記,例如UART,VGA等,但是《驅動篇I》貴就貴在建模技巧的昇華,亦即低階建模II。 話說低階建模II,讀過《建模篇》的朋友多少也會面
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗二十一:SDRAM模組④ — 頁讀寫 β
實驗二十一:SDRAM模組④ — 頁讀寫 β 未進入主題之前,讓我們先來談談一些重要的體外話。《整合篇》之際,筆者曾經比擬Verilog如何模仿for迴圈,我們知道for迴圈是順序語言的產物,如果Verilog要實現屬於自己的for迴圈,那麼它要考慮的東西除了步驟以外,還有非常關鍵的時鐘。 for(
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗十:PS/2模組④ — 普通滑鼠
實驗十:PS/2模組④ — 普通滑鼠 學習PS/2鍵盤以後,接下來就要學習 PS/2 滑鼠。PS/2滑鼠相較PS/2鍵盤,驅動難度稍微高了一點點,因為FPGA(從機)不僅僅是從PS/2滑鼠哪裡讀取資料,FPGA還要往滑鼠裡寫資料 ... 反之,FPGA只要對PS/2鍵盤讀取資料即可。然而,最傷腦筋的地方就在
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗十八:SDRAM模組① — 單字讀寫
實驗十八:SDRAM模組① — 單字讀寫 筆者與SDRAM有段不短的孽緣,它作為冤魂日夜不斷糾纏筆者。筆者嘗試過許多方法將其退散,不過屢試屢敗的筆者,最終心情像橘子一樣橙。《整合篇》之際,筆者曾經大戰幾回兒,不過內容都是點到即止。最近它破蠱而出,日夜不停:“好~痛苦!好~痛苦!”地呻吟著,嚇得筆者不敢半夜如
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗二十七:TFT模組
實驗二十七:TFT模組 - 顯示 所謂TFT(Thin Film Transistor)就是眾多LCD當中,其中一種支援顏色的LCD,相較古老的點陣LCD(12864笑),它可謂高階了。黑金的TFT LCD除了320×240大小以外,內建SSD1289控制器,同時也是獨立模組。事實上,無論是驅動點陣LCD還
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗十三:串列埠模組② — 接收
實驗十三:串列埠模組② — 接收 我們在實驗十二實現了串列埠傳送,然而這章實驗則要實現串列埠接收 ... 在此,筆者也會使用其它思路實現串列埠接收。 圖13.1 模組之間的資料傳輸。 假設我們不考慮波特率,而且一幀資料之間的傳輸也只是發生在FPGA之間,即兩隻模組之間互轉,並且兩塊模組都使用相同的時
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗七:PS/2模組① — 鍵盤
實驗七:PS/2模組① — 鍵盤 實驗七依然也是熟爛的PS/2鍵盤。相較《建模篇》的PS/2鍵盤實驗,實驗七實除了實現基本的驅動以外,我們還要深入解PS/2時序,還有PS/2鍵盤的行為。不過,為了節省珍貴的頁數,怒筆者不再重複有關PS/2的基礎內容,那些不曉得的讀者請複習《建模篇》或者自行谷歌一下。 市場
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗九:PS/2模組③ — 鍵盤與多組合鍵
實驗九:PS/2模組③ — 鍵盤與多組合鍵 筆者曾經說過,通碼除了單位元組以外,也有雙位元組通碼,而且雙位元組通碼都是 8’hE0開頭,別名又是 E0按鍵。常見的的E0按鍵有,<↑>,<↓>,<←>,<→>,<HOME>,<PRTSC>
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗二十五:SDHC模組
實驗二十五:SDHC模組 筆者曾經說過,SD卡發展至今已經衍生許多版本,實驗二十四就是針對版本SDV1.×的SD卡。實驗二十四也說過,CMD24還有CMD17會故意偏移地址29,讓原本範圍指向從原本的232 變成 223,原因是SD卡讀寫一次都有512個位元組。為此我們可以這樣計算: SDV1.x = 2
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗二十:SDRAM模組③ — 頁讀寫 α
實驗二十:SDRAM模組③ — 頁讀寫 α 完成單字讀寫與多字讀寫以後,接下來我們要實驗頁讀寫。醜話當前,實驗二十的頁讀寫只是實驗性質的東西,其中不存在任何實用價值,筆者希望讀者可以把它當成頁讀寫的熱身運動。 表示20.1 Mode Register的內容。 Mode Register
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗二十八:TFT模組
實驗二十八:TFT模組 - 觸屏 讀者在上一個實驗所玩弄過的 TFT LCD模組,除了顯示大小為 320 × 240,顏色為16位RGB的影象資訊以外,它還支援觸屏。所謂觸屏就是滑鼠還有鍵盤以外的輸入手段,例如現在流行平板還有智慧手機,觸屏輸入對我們來說,已經成為日常的一部分。描述語言一門偏向硬體的語言
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗二十二:SDRAM模組⑤ — FIFO讀寫
經過漫長的戰鬥以後,我們終於來到最後。對於普通人而言,頁讀寫就是一名戰士的墓碑(最終戰役) ... 然而,怕死的筆者想透過這個實驗告訴讀者,旅程的終點就是旅程的起點。一直以來,筆者都在煩惱“SDRAM是否應該成為儲存類?”SDRAM作為一介儲存資源(儲存器),它的好處就是大容量空間,壞處則就是麻煩的控制規
【黑金原創教程】【FPGA那些事兒-驅動篇I 】實驗十四:儲存模組
實驗十四比起動手筆者更加註重原理,因為實驗十四要討論的東西,不是其它而是低階建模II之一的模組類,即儲存模組。接觸順序語言之際,“儲存”不禁讓人聯想到變數或者陣列,結果它們好比資料的暫存空間。 1. int main() 2. { 3. int VarA; 4.