1. 程式人生 > >YOLO原始碼分析之data.c

YOLO原始碼分析之data.c

darknet裡樣本的儲存是以如下形式進行排列的

flag | class_info | box_info

flag為0或者1,表示有沒有物體

class_info表示類別資訊,其長度是num_class

box_info表示標註資訊,其長度是5(x, y, w, h, o)

d.X.val指向實際的影象資料,其經過深度網路後,變成detection_layer或者region_layer裡的l.output

d.y.val指向實際的標註資訊,其範圍已經轉換到[0,1],其在detection_layer或者region_layer裡是state.truth

#include "data.h"
#include "utils.h"
#include "image.h"
#include "cuda.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

list *get_paths(char *filename)
{
    char *path;
    FILE *file = fopen(filename, "r");
    if(!file) file_error(filename);
    list *lines = make_list();
    while((path=fgetl(file))){
        list_insert(lines, path);
    }
    fclose(file);
    return lines;
}

/*
char **get_random_paths_indexes(char **paths, int n, int m, int *indexes)
{
    char **random_paths = calloc(n, sizeof(char*));
    int i;
    pthread_mutex_lock(&mutex);
    for(i = 0; i < n; ++i){
        int index = rand()%m;
        indexes[i] = index;
        random_paths[i] = paths[index];
        if(i == 0) printf("%s\n", paths[index]);
    }
    pthread_mutex_unlock(&mutex);
    return random_paths;
}
*/

char **get_random_paths(char **paths, int n, int m)
{
    char **random_paths = calloc(n, sizeof(char*));
    int i;
    pthread_mutex_lock(&mutex);
    for(i = 0; i < n; ++i){
        int index = rand()%m;
        random_paths[i] = paths[index];
        //if(i == 0) printf("%s\n", paths[index]);
    }
    pthread_mutex_unlock(&mutex);
    return random_paths;
}

char **find_replace_paths(char **paths, int n, char *find, char *replace)
{
    char **replace_paths = calloc(n, sizeof(char*));
    int i;
    for(i = 0; i < n; ++i){
        char replaced[4096];
        find_replace(paths[i], find, replace, replaced);
        replace_paths[i] = copy_string(replaced);
    }
    return replace_paths;
}

matrix load_image_paths_gray(char **paths, int n, int w, int h)
{
    int i;
    matrix X;
    X.rows = n;
    X.vals = calloc(X.rows, sizeof(float*));
    X.cols = 0;

    for(i = 0; i < n; ++i){
        image im = load_image(paths[i], w, h, 3);

        image gray = grayscale_image(im);
        free_image(im);
        im = gray;

        X.vals[i] = im.data;
        X.cols = im.h*im.w*im.c;
    }
    return X;
}

matrix load_image_paths(char **paths, int n, int w, int h)
{
    int i;
    matrix X;
    X.rows = n;
    X.vals = calloc(X.rows, sizeof(float*));
    X.cols = 0;

    for(i = 0; i < n; ++i){
        image im = load_image_color(paths[i], w, h);
        X.vals[i] = im.data;
        X.cols = im.h*im.w*im.c;
    }
    return X;
}

matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{
    int i;
    matrix X;
    X.rows = n;
    X.vals = calloc(X.rows, sizeof(float*));
    X.cols = 0;

    for(i = 0; i < n; ++i){
        image im = load_image_color(paths[i], 0, 0);
        image crop = random_augment_image(im, angle, aspect, min, max, size);
        int flip = rand()%2;
        if (flip) flip_image(crop);
        random_distort_image(crop, hue, saturation, exposure);

        /*
        show_image(im, "orig");
        show_image(crop, "crop");
        cvWaitKey(0);
        */
        free_image(im);
        X.vals[i] = crop.data;
        X.cols = crop.h*crop.w*crop.c;
    }
    return X;
}


box_label *read_boxes(char *filename, int *n)
{
    box_label *boxes = calloc(1, sizeof(box_label));
    FILE *file = fopen(filename, "r");
    if(!file) file_error(filename);
    float x, y, h, w;
    int id;
    int count = 0;
    while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
        boxes = realloc(boxes, (count+1)*sizeof(box_label));
        boxes[count].id = id;
        boxes[count].x = x;
        boxes[count].y = y;
        boxes[count].h = h;
        boxes[count].w = w;
        boxes[count].left   = x - w/2;
        boxes[count].right  = x + w/2;
        boxes[count].top    = y - h/2;
        boxes[count].bottom = y + h/2;
        ++count;
    }
    fclose(file);
    *n = count;
    return boxes;
}

void randomize_boxes(box_label *b, int n)
{
    int i;
    for(i = 0; i < n; ++i){
        box_label swap = b[i];
        int index = rand()%n;
        b[i] = b[index];
        b[index] = swap;
    }
}

void correct_boxes(box_label *boxes, int n, float dx, float dy, float sx, float sy, int flip)
{
    int i;
    for(i = 0; i < n; ++i){
        if(boxes[i].x == 0 && boxes[i].y == 0) {
            boxes[i].x = 999999;
            boxes[i].y = 999999;
            boxes[i].w = 999999;
            boxes[i].h = 999999;
            continue;
        }
        boxes[i].left   = boxes[i].left  * sx - dx;
        boxes[i].right  = boxes[i].right * sx - dx;
        boxes[i].top    = boxes[i].top   * sy - dy;
        boxes[i].bottom = boxes[i].bottom* sy - dy;

        if(flip){
            float swap = boxes[i].left;
            boxes[i].left = 1. - boxes[i].right;
            boxes[i].right = 1. - swap;
        }

        boxes[i].left =  constrain(0, 1, boxes[i].left);
        boxes[i].right = constrain(0, 1, boxes[i].right);
        boxes[i].top =   constrain(0, 1, boxes[i].top);
        boxes[i].bottom =   constrain(0, 1, boxes[i].bottom);

        boxes[i].x = (boxes[i].left+boxes[i].right)/2;
        boxes[i].y = (boxes[i].top+boxes[i].bottom)/2;
        boxes[i].w = (boxes[i].right - boxes[i].left);
        boxes[i].h = (boxes[i].bottom - boxes[i].top);

        boxes[i].w = constrain(0, 1, boxes[i].w);
        boxes[i].h = constrain(0, 1, boxes[i].h);
    }
}

void fill_truth_swag(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
{
    char labelpath[4096];
    find_replace(path, "images", "labels", labelpath);
    find_replace(labelpath, "JPEGImages", "labels", labelpath);
    find_replace(labelpath, ".jpg", ".txt", labelpath);
    find_replace(labelpath, ".JPG", ".txt", labelpath);
    find_replace(labelpath, ".JPEG", ".txt", labelpath);

    int count = 0;
    box_label *boxes = read_boxes(labelpath, &count);
    randomize_boxes(boxes, count);
    correct_boxes(boxes, count, dx, dy, sx, sy, flip);
    float x,y,w,h;
    int id;
    int i;

    for (i = 0; i < count && i < 30; ++i) {
        x =  boxes[i].x;
        y =  boxes[i].y;
        w =  boxes[i].w;
        h =  boxes[i].h;
        id = boxes[i].id;

        if (w < .0 || h < .0) continue;

        int index = (4+classes) * i;

        truth[index++] = x;
        truth[index++] = y;
        truth[index++] = w;
        truth[index++] = h;

        if (id < classes) truth[index+id] = 1;
    }
    free(boxes);
}

void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int flip, float dx, float dy, float sx, float sy)
{
    char labelpath[4096];
    find_replace(path, "images", "labels", labelpath);
    find_replace(labelpath, "JPEGImages", "labels", labelpath);

    find_replace(labelpath, ".jpg", ".txt", labelpath);
    find_replace(labelpath, ".png", ".txt", labelpath);
    find_replace(labelpath, ".JPG", ".txt", labelpath);
    find_replace(labelpath, ".JPEG", ".txt", labelpath);
    int count = 0;
    box_label *boxes = read_boxes(labelpath, &count);
    randomize_boxes(boxes, count);
    correct_boxes(boxes, count, dx, dy, sx, sy, flip);
    float x,y,w,h;
    int id;
    int i;

    for (i = 0; i < count; ++i) {
        x =  boxes[i].x;
        y =  boxes[i].y;
        w =  boxes[i].w;
        h =  boxes[i].h;
        id = boxes[i].id;

        if (w < .01 || h < .01) continue;

        int col = (int)(x*num_boxes);
        int row = (int)(y*num_boxes);

        x = x*num_boxes - col;
        y = y*num_boxes - row;

        int index = (col+row*num_boxes)*(5+classes);
        if (truth[index]) continue;
// 從這裡可以看出truth是一個grid*grid*(5+classes)的陣列,其中5代表著
// [0] is_obj	
// [1] x
// [2] y
// [3] w
// [4] h
// 然後truth的[5]--[5+classes]就是id了
truth[index++] = 1; if (id < classes) truth[index+id] = 1; index += classes; truth[index++] = x; truth[index++] = y; truth[index++] = w; truth[index++] = h; } free(boxes);}void fill_truth_detection(char *path, int num_boxes, float *truth, int classes, int flip, float dx, float dy, float sx, float sy){ char labelpath[4096]; find_replace(path, "images", "labels", labelpath); find_replace(labelpath, "JPEGImages", "labels", labelpath); find_replace(labelpath, "raw", "labels", labelpath); find_replace(labelpath, ".jpg", ".txt", labelpath); find_replace(labelpath, ".png", ".txt", labelpath); find_replace(labelpath, ".JPG", ".txt", labelpath); find_replace(labelpath, ".JPEG", ".txt", labelpath); int count = 0; box_label *boxes = read_boxes(labelpath, &count); randomize_boxes(boxes, count); correct_boxes(boxes, count, dx, dy, sx, sy, flip); if(count > num_boxes) count = num_boxes; float x,y,w,h; int id; int i; for (i = 0; i < count; ++i) { x = boxes[i].x; y = boxes[i].y; w = boxes[i].w; h = boxes[i].h; id = boxes[i].id; if ((w < .01 || h < .01)) continue; truth[i*5+0] = x; truth[i*5+1] = y; truth[i*5+2] = w; truth[i*5+3] = h; truth[i*5+4] = id; } free(boxes);}#define NUMCHARS 37void print_letters(float *pred, int n){ int i; for(i = 0; i < n; ++i){ int index = max_index(pred+i*NUMCHARS, NUMCHARS); printf("%c", int_to_alphanum(index)); } printf("\n");}void fill_truth_captcha(char *path, int n, float *truth){ char *begin = strrchr(path, '/'); ++begin; int i; for(i = 0; i < strlen(begin) && i < n && begin[i] != '.'; ++i){ int index = alphanum_to_int(begin[i]); if(index > 35) printf("Bad %c\n", begin[i]); truth[i*NUMCHARS+index] = 1; } for(;i < n; ++i){ truth[i*NUMCHARS + NUMCHARS-1] = 1; }}data load_data_captcha(char **paths, int n, int m, int k, int w, int h){ if(m) paths = get_random_paths(paths, n, m); data d = {0}; d.shallow = 0; d.X = load_image_paths(paths, n, w, h); d.y = make_matrix(n, k*NUMCHARS); int i; for(i = 0; i < n; ++i){ fill_truth_captcha(paths[i], k, d.y.vals[i]); } if(m) free(paths); return d;}data load_data_captcha_encode(char **paths, int n, int m, int w, int h){ if(m) paths = get_random_paths(paths, n, m); data d = {0}; d.shallow = 0; d.X = load_image_paths(paths, n, w, h); d.X.cols = 17100; d.y = d.X; if(m) free(paths); return d;}void fill_truth(char *path, char **labels, int k, float *truth){ int i; memset(truth, 0, k*sizeof(float)); int count = 0; for(i = 0; i < k; ++i){ if(strstr(path, labels[i])){ truth[i] = 1; ++count; } } if(count != 1) printf("Too many or too few labels: %d, %s\n", count, path);}void fill_hierarchy(float *truth, int k, tree *hierarchy){ int j; for(j = 0; j < k; ++j){ if(truth[j]){ int parent = hierarchy->parent[j]; while(parent >= 0){ truth[parent] = 1; parent = hierarchy->parent[parent]; } } } int i; int count = 0; for(j = 0; j < hierarchy->groups; ++j){ //printf("%d\n", count); int mask = 1; for(i = 0; i < hierarchy->group_size[j]; ++i){ if(truth[count + i]){ mask = 0; break; } } if (mask) { for(i = 0; i < hierarchy->group_size[j]; ++i){ truth[count + i] = SECRET_NUM; } } count += hierarchy->group_size[j]; }}matrix load_labels_paths(char **paths, int n, char **labels, int k, tree *hierarchy){ matrix y = make_matrix(n, k); int i; for(i = 0; i < n && labels; ++i){ fill_truth(paths[i], labels, k, y.vals[i]); if(hierarchy){ fill_hierarchy(y.vals[i], k, hierarchy); } } return y;}matrix load_tags_paths(char **paths, int n, int k){ matrix y = make_matrix(n, k); int i; int count = 0; for(i = 0; i < n; ++i){ char label[4096]; find_replace(paths[i], "imgs", "labels", label); find_replace(label, "_iconl.jpeg", ".txt", label); FILE *file = fopen(label, "r"); if(!file){ find_replace(label, "labels", "labels2", label); file = fopen(label, "r"); if(!file) continue; } ++count; int tag; while(fscanf(file, "%d", &tag) == 1){ if(tag < k){ y.vals[i][tag] = 1; } } fclose(file); } printf("%d/%d\n", count, n); return y;}char **get_labels(char *filename){ list *plist = get_paths(filename); char **labels = (char **)list_to_array(plist); free_list(plist); return labels;}void free_data(data d){ if(!d.shallow){ free_matrix(d.X); free_matrix(d.y); }else{ free(d.X.vals); free(d.y.vals); }}data load_data_region(int n, char **paths, int m, int w, int h, int size, int classes, float jitter, float hue, float saturation, float exposure){ char **random_paths = get_random_paths(paths, n, m); int i; data d = {0}; d.shallow = 0; d.X.rows = n; d.X.vals = calloc(d.X.rows, sizeof(float*)); d.X.cols = h*w*3; int k = size*size*(5+classes); d.y = make_matrix(n, k); for(i = 0; i < n; ++i){ image orig = load_image_color(random_paths[i], 0, 0); int oh = orig.h; int ow = orig.w; int dw = (ow*jitter); int dh = (oh*jitter); int pleft = rand_uniform(-dw, dw); int pright = rand_uniform(-dw, dw); int ptop = rand_uniform(-dh, dh); int pbot = rand_uniform(-dh, dh); int swidth = ow - pleft - pright; int sheight = oh - ptop - pbot; float sx = (float)swidth / ow; float sy = (float)sheight / oh; int flip = rand()%2; image cropped = crop_image(orig, pleft, ptop, swidth, sheight); float dx = ((float)pleft/ow)/sx; float dy = ((float)ptop /oh)/sy; image sized = resize_image(cropped, w, h); if(flip) flip_image(sized); random_distort_image(sized, hue, saturation, exposure); d.X.vals[i] = sized.data; fill_truth_region(random_paths[i], d.y.vals[i], classes, size, flip, dx, dy, 1./sx, 1./sy); free_image(orig); free_image(cropped); } free(random_paths); return d;}data load_data_compare(int n, char **paths, int m, int classes, int w, int h){ if(m) paths = get_random_paths(paths, 2*n, m); int i,j; data d = {0}; d.shallow = 0; d.X.rows = n; d.X.vals = calloc(d.X.rows, sizeof(float*)); d.X.cols = h*w*6; int k = 2*(classes); d.y = make_matrix(n, k); for(i = 0; i < n; ++i){ image im1 = load_image_color(paths[i*2], w, h); image im2 = load_image_color(paths[i*2+1], w, h); d.X.vals[i] = calloc(d.X.cols, sizeof(float)); memcpy(d.X.vals[i], im1.data, h*w*3*sizeof(float)); memcpy(d.X.vals[i] + h*w*3, im2.data, h*w*3*sizeof(float)); int id; float iou; char imlabel1[4096]; char imlabel2[4096]; find_replace(paths[i*2], "imgs", "labels", imlabel1); find_replace(imlabel1, "jpg", "txt", imlabel1); FILE *fp1 = fopen(imlabel1, "r"); while(fscanf(fp1, "%d %f", &id, &iou) == 2){ if (d.y.vals[i][2*id] < iou) d.y.vals[i][2*id] = iou; } find_replace(paths[i*2+1], "imgs", "labels", imlabel2); find_replace(imlabel2, "jpg", "txt", imlabel2); FILE *fp2 = fopen(imlabel2, "r"); while(fscanf(fp2, "%d %f", &id, &iou) == 2){ if (d.y.vals[i][2*id + 1] < iou) d.y.vals[i][2*id + 1] = iou; } for (j = 0; j < classes; ++j){ if (d.y.vals[i][2*j] > .5 && d.y.vals[i][2*j+1] < .5){ d.y.vals[i][2*j] = 1; d.y.vals[i][2*j+1] = 0; } else if (d.y.vals[i][2*j] < .5 && d.y.vals[i][2*j+1] > .5){ d.y.vals[i][2*j] = 0; d.y.vals[i][2*j+1] = 1; } else { d.y.vals[i][2*j] = SECRET_NUM; d.y.vals[i][2*j+1] = SECRET_NUM; } } fclose(fp1); fclose(fp2); free_image(im1); free_image(im2); } if(m) free(paths); return d;}data load_data_swag(char **paths, int n, int classes, float jitter){ int index = rand()%n; char *random_path = paths[index]; image orig = load_image_color(random_path, 0, 0); int h = orig.h; int w = orig.w; data d = {0}; d.shallow = 0; d.w = w; d.h = h; d.X.rows = 1; d.X.vals = calloc(d.X.rows, sizeof(float*)); d.X.cols = h*w*3; int k = (4+classes)*30; d.y = make_matrix(1, k); int dw = w*jitter; int dh = h*jitter; int pleft = rand_uniform(-dw, dw); int pright = rand_uniform(-dw, dw); int ptop = rand_uniform(-dh, dh); int pbot = rand_uniform(-dh, dh); int swidth = w - pleft - pright; int sheight = h - ptop - pbot; float sx = (float)swidth / w; float sy = (float)sheight / h; int flip = rand()%2; image cropped = crop_image(orig, pleft, ptop, swidth, sheight); float dx = ((float)pleft/w)/sx; float dy = ((float)ptop /h)/sy; image sized = resize_image(cropped, w, h); if(flip) flip_image(sized); d.X.vals[0] = sized.data; fill_truth_swag(random_path, d.y.vals[0], classes, flip, dx, dy, 1./sx, 1./sy); free_image(orig); free_image(cropped); return d;}data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter, float hue, float saturation, float exposure){ char **random_paths = get_random_paths(paths, n, m); int i; data d = {0}; d.shallow = 0; d.X.rows = n; d.X.vals = calloc(d.X.rows, sizeof(float*)); d.X.cols = h*w*3; d.y = make_matrix(n, 5*boxes); for(i = 0; i < n; ++i){ image orig = load_image_color(random_paths[i], 0, 0); int oh = orig.h; int ow = orig.w; int dw = (ow*jitter); int dh = (oh*jitter); int pleft = rand_uniform(-dw, dw); int pright = rand_uniform(-dw, dw); int ptop = rand_uniform(-dh, dh); int pbot = rand_uniform(-dh, dh); int swidth = ow - pleft - pright; int sheight = oh - ptop - pbot; float sx = (float)swidth / ow; float sy = (float)sheight / oh; int flip = rand()%2; image cropped = crop_image(orig, pleft, ptop, swidth, sheight); float dx = ((float)pleft/ow)/sx; float dy = ((float)ptop /oh)/sy; image sized = resize_image(cropped, w, h); if(flip) flip_image(sized); random_distort_image(sized, hue, saturation, exposure); d.X.vals[i] = sized.data; fill_truth_detection(random_paths[i], boxes, d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy); free_image(orig); free_image(cropped); } free(random_paths); return d;}void *load_thread(void *ptr){ //printf("Loading data: %d\n", rand()); load_args a = *(struct load_args*)ptr; if(a.exposure == 0) a.exposure = 1; if(a.saturation == 0) a.saturation = 1; if(a.aspect == 0) a.aspect = 1; if (a.type == OLD_CLASSIFICATION_DATA){ *a.d = load_data_old(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); } else if (a.type == CLASSIFICATION_DATA){ *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.hierarchy, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure); } else if (a.type == SUPER_DATA){ *a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale); } else if (a.type == WRITING_DATA){ *a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h); } else if (a.type == REGION_DATA){ *a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure); } else if (a.type == DETECTION_DATA){ *a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure); } else if (a.type == SWAG_DATA){ *a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter); } else if (a.type == COMPARE_DATA){ *a.d = load_data_compare(a.n, a.paths, a.m, a.classes, a.w, a.h); } else if (a.type == IMAGE_DATA){ *(a.im) = load_image_color(a.path, 0, 0); *(a.resized) = resize_image(*(a.im), a.w, a.h); } else if (a.type == TAG_DATA){ *a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure); } free(ptr); return 0;}pthread_t load_data_in_thread(load_args args){ pthread_t thread; struct load_args *ptr = calloc(1, sizeof(struct load_args)); *ptr = args; if(pthread_create(&thread, 0, load_thread, ptr)) error("Thread creation failed"); return thread;}void *load_threads(void *ptr){ int i; load_args args = *(load_args *)ptr; if (args.threads == 0) args.threads = 1; data *out = args.d; int total = args.n; free(ptr); data *buffers = calloc(args.threads, sizeof(data)); pthread_t *threads = calloc(args.threads, sizeof(pthread_t)); for(i = 0; i < args.threads; ++i){ args.d = buffers + i; args.n = (i+1) * total/args.threads - i * total/args.threads; threads[i] = load_data_in_thread(args); } for(i = 0; i < args.threads; ++i){ pthread_join(threads[i], 0); } *out = concat_datas(buffers, args.threads); out->shallow = 0; for(i = 0; i < args.threads; ++i){ buffers[i].shallow = 1; free_data(buffers[i]); } free(buffers); free(threads); return 0;}pthread_t load_data(load_args args){ pthread_t thread; struct load_args *ptr = calloc(1, sizeof(struct load_args)); *ptr = args; if(pthread_create(&thread, 0, load_threads, ptr)) error("Thread creation failed"); return thread;}data load_data_writing(char **paths, int n, int m, int w, int h, int out_w, int out_h){ if(m) paths = get_random_paths(paths, n, m); char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png"); data d = {0}; d.shallow = 0; d.X = load_image_paths(paths, n, w, h); d.y = load_image_paths_gray(replace_paths, n, out_w, out_h); if(m) free(paths); int i; for(i = 0; i < n; ++i) free(replace_paths[i]); free(replace_paths); return d;}data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h){ if(m) paths = get_random_paths(paths, n, m); data d = {0}; d.shallow = 0; d.X = load_image_paths(paths, n, w, h); d.y = load_labels_paths(paths, n, labels, k, 0); if(m) free(paths); return d;}/* data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) { data d = {0}; d.indexes = calloc(n, sizeof(int)); if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes); d.shallow = 0; d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure); d.y = load_labels_paths(paths, n, labels, k); if(m) free(paths); return d; } */data load_data_super(char **paths, int n, int m, int w, int h, int scale){ if(m) paths = get_random_paths(paths, n, m); data d = {0}; d.shallow = 0; int i; d.X.rows = n; d.X.vals = calloc(n, sizeof(float*)); d.X.cols = w*h*3; d.y.rows = n; d.y.vals = calloc(n, sizeof(float*)); d.y.cols = w*scale * h*scale * 3; for(i = 0; i < n; ++i){ image im = load_image_color(paths[i], 0, 0); image crop = random_crop_image(im, w*scale, h*scale); int flip = rand()%2; if (flip) flip_image(crop); image resize = resize_image(crop, w, h); d.X.vals[i] = resize.data; d.y.vals[i] = crop.data; free_image(im); } if(m) free(paths); return d;}data load_data_augment(char **paths, int n, int m, char **labels, int k, tree *hierarchy, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure){ if(m) paths = get_random_paths(paths, n, m); data d = {0}; d.shallow = 0; d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure); d.y = load_labels_paths(paths, n, labels, k, hierarchy); if(m) free(paths); return d;}data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure){ if(m) paths = get_random_paths(paths, n, m); data d = {0}; d.w = size; d.h = size; d.shallow = 0; d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure); d.y = load_tags_paths(paths, n, k); if(m) free(paths); return d;}matrix concat_matrix(matrix m1, matrix m2){ int i, count = 0; matrix m; m.cols = m1.cols; m.rows = m1.rows+m2.rows; m.vals = calloc(m1.rows + m2.rows, sizeof(float*)); for(i = 0; i < m1.rows; ++i){ m.vals[count++] = m1.vals[i]; } for(i = 0; i < m2.rows; ++i){ m.vals[count++] = m2.vals[i]; } return m;}data concat_data(data d1, data d2){ data d = {0}; d.shallow = 1; d.X = concat_matrix(d1.X, d2.X); d.y = concat_matrix(d1.y, d2.y); return d;}data concat_datas(data *d, int n){ int i; data out = {0}; for(i = 0; i < n; ++i){ data new = concat_data(d[i], out); free_data(out); out = new; } return out;}data load_categorical_data_csv(char *filename, int target, int k){ data d = {0}; d.shallow = 0; matrix X = csv_to_matrix(filename); float *truth_1d = pop_column(&X, target); float **truth = one_hot_encode(truth_1d, X.rows, k); matrix y; y.rows = X.rows; y.cols = k; y.vals = truth; d.X = X; d.y = y; free(truth_1d); return d;}data load_cifar10_data(char *filename){ data d = {0}; d.shallow = 0; long i,j; matrix X = make_matrix(10000, 3072); matrix y = make_matrix(10000, 10); d.X = X; d.y = y; FILE *fp = fopen(filename, "rb"); if(!fp) file_error(filename); for(i = 0; i < 10000; ++i){ unsigned char bytes[3073]; fread(bytes, 1, 3073, fp); int class = bytes[0]; y.vals[i][class] = 1; for(j = 0; j < X.cols; ++j){ X.vals[i][j] = (double)bytes[j+1]; } } //translate_data_rows(d, -128); scale_data_rows(d, 1./255); //normalize_data_rows(d); fclose(fp); return d;}void get_random_batch(data d, int n, float *X, float *y){ int j; for(j = 0; j < n; ++j){ int index = rand()%d.X.rows; memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); }}void get_next_batch(data d, int n, int offset, float *X, float *y){ int j; for(j = 0; j < n; ++j){ int index = offset + j; memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));// d.X.vals是二級指標,d.X.vals[index]指向實際的資料,所以可以看出,一級指標指向
// batch的索引地址,二級指標指向實際的影象資料,二級指標的size即為h*w*c
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); }}void smooth_data(data d){ int i, j; float scale = 1. / d.y.cols; float eps = .1; for(i = 0; i < d.y.rows; ++i){ for(j = 0; j < d.y.cols; ++j){ d.y.vals[i][j] = eps * scale + (1-eps) * d.y.vals[i][j]; } }}data load_all_cifar10(){ data d = {0}; d.shallow = 0; int i,j,b; matrix X = make_matrix(50000, 3072); matrix y = make_matrix(50000, 10); d.X = X; d.y = y; for(b = 0; b < 5; ++b){ char buff[256]; sprintf(buff, "data/cifar/cifar-10-batches-bin/data_batch_%d.bin", b+1); FILE *fp = fopen(buff, "rb"); if(!fp) file_error(buff); for(i = 0; i < 10000; ++i){ unsigned char bytes[3073]; fread(bytes, 1, 3073, fp); int class = bytes[0]; y.vals[i+b*10000][class] = 1; for(j = 0; j < X.cols; ++j){ X.vals[i+b*10000][j] = (double)bytes[j+1]; } } fclose(fp); } //normalize_data_rows(d); //translate_data_rows(d, -128); scale_data_rows(d, 1./255); smooth_data(d); return d;}data load_go(char *filename){ FILE *fp = fopen(filename, "rb"); matrix X = make_matrix(3363059, 361); matrix y = make_matrix(3363059, 361); int row, col; if(!fp) file_error(filename); char *label; int count = 0; while((label = fgetl(fp))){ int i; if(count == X.rows){ X = resize_matrix(X, count*2); y = resize_matrix(y, count*2); } sscanf(label, "%d %d", &row, &col); char *board = fgetl(fp); int index = row*19 + col; y.vals[count][index] = 1; for(i = 0; i < 19*19; ++i){ float val = 0; if(board[i] == '1') val = 1; else if(board[i] == '2') val = -1; X.vals[count][i] = val; } ++count; free(label); free(board); } X = resize_matrix(X, count); y = resize_matrix(y, count); data d = {0}; d.shallow = 0; d.X = X; d.y = y; fclose(fp); return d;}void randomize_data(data d){ int i; for(i = d.X.rows-1; i > 0; --i){ int index = rand()%i; float *swap = d.X.vals[index]; d.X.vals[index] = d.X.vals[i]; d.X.vals[i] = swap; swap = d.y.vals[index]; d.y.vals[index] = d.y.vals[i]; d.y.vals[i] = swap; }}void scale_data_rows(data d, float s){ int i; for(i = 0; i < d.X.rows; ++i){ scale_array(d.X.vals[i], d.X.cols, s); }}void translate_data_rows(data d, float s){ int i; for(i = 0; i < d.X.rows; ++i){ translate_array(d.X.vals[i], d.X.cols, s); }}void normalize_data_rows(data d){ int i; for(i = 0; i < d.X.rows; ++i){ normalize_array(d.X.vals[i], d.X.cols); }}data get_data_part(data d, int part, int total){ data p = {0}; p.shallow = 1; p.X.rows = d.X.rows * (part + 1) / total - d.X.rows * part / total; p.y.rows = d.y.rows * (part + 1) / total - d.y.rows * part / total; p.X.cols = d.X.cols; p.y.cols = d.y.cols; p.X.vals = d.X.vals + d.X.rows * part / total; p.y.vals = d.y.vals + d.y.rows * part / total; return p;}data get_random_data(data d, int num){ data r = {0}; r.shallow = 1; r.X.rows = num; r.y.rows = num; r.X.cols = d.X.cols; r.y.cols = d.y.cols; r.X.vals = calloc(num, sizeof(float *)); r.y.vals = calloc(num, sizeof(float *)); int i; for(i = 0; i < num; ++i){ int index = rand()%d.X.rows; r.X.vals[i] = d.X.vals[index]; r.y.vals[i] = d.y.vals[index]; } return r;}data *split_data(data d, int part, int total){ data *split = calloc(2, sizeof(data)); int i; int start = part*d.X.rows/total; int end = (part+1)*d.X.rows/total; data train; data test; train.shallow = test.shallow = 1; test.X.rows = test.y.rows = end-start; train.X.rows = train.y.rows = d.X.rows - (end-start); train.X.cols = test.X.cols = d.X.cols; train.y.cols = test.y.cols = d.y.cols; train.X.vals = calloc(train.X.rows, sizeof(float*)); test.X.vals = calloc(test.X.rows, sizeof(float*)); train.y.vals = calloc(train.y.rows, sizeof(float*)); test.y.vals = calloc(test.y.rows, sizeof(float*)); for(i = 0; i < start; ++i){ train.X.vals[i] = d.X.vals[i]; train.y.vals[i] = d.y.vals[i]; } for(i = start; i < end; ++i){ test.X.vals[i-start] = d.X.vals[i]; test.y.vals[i-start] = d.y.vals[i]; } for(i = end; i < d.X.rows; ++i){ train.X.vals[i-(end-start)] = d.X.vals[i]; train.y.vals[i-(end-start)] = d.y.vals[i]; } split[0] = train; split[1] = test; return split;}

相關推薦

YOLO原始碼分析data.c

darknet裡樣本的儲存是以如下形式進行排列的 flag | class_info | box_info flag為0或者1,表示有沒有物體 class_info表示類別資訊,其長度是num_class box_info表示標註資訊,其長度是5(x, y, w, h, o

redis原始碼分析intset.c

#include <stdio.h> #include <stdlib.h> #include <string.h> #include "intset.h" #include "zmalloc.h" #include "end

redis原始碼分析zipmap.c

/** * 建立空zipmap * @return */ /* Create a new empty zipmap. */ unsigned char *zipmapNew(void) { unsigned char *zm = zmalloc(2

Open-iscs原始碼分析---iscsiadm.c

login處理... main(int argc, char **argv) { ...... printf("anycom: iscsiadmin.c 2332"); rc = exec_node_op(op, do_login, do_logout,

Android Wi-Fi原始碼分析WifiService操作Wi-Fi(一):分析Wifi.c中的wifi_load_driver()函式

Wi-Fi原始碼分析之WifiService操作Wi-Fi(一) 分析Wifi.c中的wifi_load_driver()函式 int wifi_load_driver() { AL

ghostscript原始碼分析 scan_token()函式 (詞法分析器iscan.c)

scan_token()函式很重要,ghostscript寫得比較瑣碎難懂,裡面有些有英文解釋。 我只對我關注的部分加了些中文註釋。當然不是所有的都理解了。但是功能還是清楚了的,像某些函式介面。 如果讓我寫的話,我一定比他寫得更清晰。哈哈,當然他的scan_token基本的框架 設計還是

STL原始碼分析hash表(gnu-c++ 2.9)

1、基本概念 關於hash表的概念這裡就不再多說,hash表的變化一般都在雜湊函式和退避方法上。STL採用的是開鏈法,即每個hash桶裡面維持一個連結串列,hash函式計算出位置後,就將節點插入該位置的連結串列上,因此,底層實現為hash表的容器,迭代器的實現

YOLO原始碼解析yolo.c

yolo.c是YOLO模型原始碼的主檔案,該檔案包括以下函式: train_yolo void train_yolo(char *cfgfile, char *weightfile) { char *train_images = "/data/voc

HotSpot原始碼分析C++物件的記憶體佈局

HotSpot採用了OOP-Klass模型來描述Java類和物件。OOP(Ordinary Object Pointer)指的是普通物件指標,而Klass用來描述物件的具體型別。為了更好理解這個模型,首先要介紹一下C++的記憶體物件模型和虛擬函式。 1、C++類物件的記憶體佈局 我們使用Visual Stud

Spark原始碼分析Spark Shell(上)

https://www.cnblogs.com/xing901022/p/6412619.html 文中分析的spark版本為apache的spark-2.1.0-bin-hadoop2.7。 bin目錄結構: -rwxr-xr-x. 1 bigdata bigdata 1089 Dec

Netty 原始碼分析拆包器的奧祕

為什麼要粘包拆包 為什麼要粘包 首先你得了解一下TCP/IP協議,在使用者資料量非常小的情況下,極端情況下,一個位元組,該TCP資料包的有效載荷非常低,傳遞100位元組的資料,需要100次TCP傳送,100次ACK,在應用及時性要求不高的情況下,將這100個有效資料拼接成一個數據包,那會縮短到一個TCP資

Android原始碼分析為什麼在onCreate() 和 onResume() 獲取不到 View 的寬高

轉載自:https://www.jianshu.com/p/d7ab114ac1f7 先來看一段很熟悉的程式碼,可能在最開始接觸安卓的時候,大部分人都寫過的一段程式碼;即嘗試在 onCreate() 和 onResume() 方法中去獲取某個 View 的寬高資訊: 但是列印輸出後,我們會發

netty原始碼分析服務端啟動

ServerBootstrap與Bootstrap分別是netty中服務端與客戶端的引導類,主要負責服務端與客戶端初始化、配置及啟動引導等工作,接下來我們就通過netty原始碼中的示例對ServerBootstrap與Bootstrap的原始碼進行一個簡單的分析。首先我們知道這兩個類都繼承自AbstractB

SNMP原始碼分析(一)配置檔案部分

snmpd.conf想必不陌生。在程序啟動過程中會去讀取配置檔案中各個配置。其中幾個引數需要先知道是幹什麼的:   token:配置檔案的每行的開頭,例如 group MyROGroup v1 readSec 這行token的引數是group。  

【kubernetes/k8s原始碼分析】kubelet原始碼分析cdvisor原始碼分析

  資料流 UnsecuredDependencies -> run   1. cadvisor.New初始化 if kubeDeps.CAdvisorInterface == nil { imageFsInfoProvider := cadv

【kubernetes/k8s原始碼分析】kubelet原始碼分析容器網路初始化原始碼分析

一. 網路基礎   1.1 網路名稱空間的操作 建立網路名稱空間: ip netns add 名稱空間內執行命令: ip netns exec 進入名稱空間: ip netns exec bash   1.2 bridge-nf-c

【kubernetes/k8s原始碼分析】kubelet原始碼分析資源上報

0. 資料流   路徑: pkg/kubelet/kubelet.go   Run函式() ->   syncNodeStatus ()  ->   registerWithAPIServer() ->

【kubernetes/k8s原始碼分析】kubelet原始碼分析啟動容器

主要是呼叫runtime,這裡預設為docker 0. 資料流 NewMainKubelet(cmd/kubelet/app/server.go) -> NewKubeGenericRuntimeManager(pkg/kubelet/kuberuntime/kuberuntime

Android系統原始碼分析-ContentProvider

距離上一次寫部落格已經半年多了,這半年發生了很多事情,也有了很多感觸,最主要是改變了忙碌了工作,更加重視身體的健康,為此也把工作地點從深圳這個一線城市換到了珠海,工作相對沒有那麼累,身體感覺也好了很多。所以在工作完成之餘,也有了更多的時間來自我學習和提高,後續會用更多時間來寫更多實用的東西,幫助我們理解

Vue 原始碼分析proxy代理

Vue 原始碼分析之proxy代理 當我們在使用Vue進行資料設定時,通常初始化格式為: let data = { age: 12, name: 'yang' } // 例項化Vue物件 let vm = new Vue({ data })