網路流(最大流+模板)
阿新 • • 發佈:2019-01-22
一、網路流的基本概念
先來看一個例項。
現在想將一些物資從S運抵T,必須經過一些中轉站。連線中轉站的是公路,每條公路都有最大運載量。如下圖:
每條弧代表一條公路,弧上的數表示該公路的最大運載量。最多能將多少貨物從S運抵T?
這是一個典型的網路流模型。為了解答此題,我們先了解網路流的有關定義和概念。
若有向圖G=(V,E)滿足下列條件:
1、有且僅有一個頂點S,它的入度為零,即d-(S) = 0,這個頂點S便稱為源點,或稱為發點。
2、有且僅有一個頂點T,它的出度為零,即d+(T) = 0,這個頂點T便稱為匯點,或稱為收點。
3、每一條弧都有非負數,叫做該邊的容量。邊(vi, vj)的容量用cij表示。
則稱之為網路流圖,記為G = (V, E, C)
譬如圖5-1就是一個網路流圖。
1. 可行流
對於網路流圖G,每一條弧(i,j)都給定一個非負數fij,這一組數滿足下列三條件時稱為這網路的可行流,用f表示它。
(1) 每一條弧(i,j)有fij≤cij。
(2) 除源點S和匯點T以外的所有的點vi,恆有:
該等式說明中間點vi的流量守恆,輸入與輸出量相等。
(3) 對於源點S和匯點T有:
這裡V(f)表示該可行流f的流量。
例如對圖5-1而言,它的一個可行流如下:
流量V(f) = 5。
2.可改進路
給定一個可行流f=。若fij = cij,稱<vi, vj>為飽和弧;否則稱<vi, vj>為非飽和弧。若fij = 0,稱<vi, vj>為零流弧;否則稱<vi, vj>為非零流弧。
定義一條道路P,起點是S、終點是T。把P上所有與P方向一致的弧定義為正向弧,正向弧的全體記為P+;把P上所有與P方向相悖的弧定義為反向弧,反向弧的全體記為P-。
譬如在圖5-1中,P = (S, V1, V2, V3, V4, T),那麼
P+ = {<S, V1>, <V1, V2>, <V2, V3>, <V4, T>}
P- = {<V4, V3>}
給定一個可行流f,P是從S到T的一條道路,如果滿足:
那麼就稱P是f的一條可改進路。(有些書上又稱:可 增廣軌)之所以稱作“可改進”,是因為可改進路上弧的流量通過一定的規則修改,可以令整個流量放大。具體方法下一節會重點介紹,此不贅述。
3.割切
要解決網路最大流問題,必須先學習割切的概念和有關知識。
G = (V, E, C)是已知的網路流圖,設U是V的一個子集,W = V\U,滿足S U,T W。即U、W把V分成兩個不相交的集合,且源點和匯點分屬不同的集合。
對於弧尾在U,弧頭在W的弧所構成的集合稱之為割切,用(U,W)表示。把割切(U,W)中所有弧的容量之和叫做此割切的容量,記為C(U,W),即:
例如圖5-1中,令U = {S, V1},則W = {V2, V3, V4, T},那麼
C(U, W) = <S, V2> + <V1, V2> + <V1, V3>+<V1, V4>=8+4+4+1=17
定理:對於已知的網路流圖,設任意一可行流為f,任意一割切為(U, W),必有:V(f) ≤ C(U, W)。
通俗簡明的講:“最大流小於等於任意割”。這是“流理論”裡最基礎最重要的定理。整個“流”的理論系統都是在這個定理上建立起來的,必須特別重視。
下面我們給出證明。
網路流、可改進路、割切都是基礎的概念,應該紮實掌握。它們三者之間乍一看似乎風馬牛不相干,其實內在聯絡是十分緊密的。
二、求最大流
何謂最大流?首先它必須是一個可行流;其次,它的流量必須達到最大。這樣的流就稱為最大流。譬如對圖5-1而言,它的最大流如下:
下面探討如何求得最大流。
在定義“可改進路”概念時,提到可以通過一定規則修改“可改進路”上弧的流量,可以使得總流量放大。下面我們就具體看一看是什麼“規則”。
對可改進路P上的弧<vi, vj>,分為兩種情況討論:
第一種情況:<vi, vj>∈P+,可以令fij增加一個常數delta。必須滿足fij + delta ≤ cij,即delta ≤ cij – fij。
第二種情況:<vi, vj>∈P-,可以令fij減少一個常數delta。必須滿足fij - delta ≥ 0,即delta ≤ fij
根據以上分析可以得出delta的計算公式:
因為P+的每條弧都是非飽和弧,P-的每條弧都是非零流弧,所以delta > 0。
容易證明,按照如此規則修正流量,既可以使所有中間點都滿足“流量守恆”(即輸入量等於輸出量),又可以使得總的流量有所增加(因為delta > 0)。
因此我們對於任意的可行流f,只要在f中能找到可改進路,那麼必然可以將f改造成為流量更大的一個可行流。我們要求的是最大流,現在的問題是:倘若在f中找不到可改進路,是不是f就一定是最大流呢?
答案是肯定的。下面我們給出證明。
定理1 可行流f是最大流的充分必要條件是:f中不存在可改進路。
證明:
首先證明必要性:已知最大流f,求證f中不存在可改進路。
若最大流f中存在可改進路P,那麼可以根據一定規則(詳見上文)修改P中弧的流量。可以將f的流量放大,這與f是最大流矛盾。故必要性得證。
再證明充分性:已知流f,並且f中不存在可改進路,求證f是最大流。
我們定義頂點集合U, W如下:
(a) S∈U,
(b) 若x∈U,且fxy<cxy,則y∈U;
若x∈U,且fyx>0,則y∈U。
(這實際上就是可改進路的構造規則)
(c) W = V \ U。
由於f中不存在可改進路,所以T∈W;又S∈U,所以U、W是一個割切(U, W)。
按照U的定義,若x∈U,y∈W,則fxy = cxy。若x∈W,y∈U,則fxy = 0。
所以,
又因 v(f)≤C(U,W)
所以f是最大流。得證。
根據充分性證明中的有關結論,我們可以得到另外一條重要定理:
最大流最小割定理:最大流等於最小割,即max V(f) = min C(U, W)。
至此,我們可以輕鬆設計出求最大流的演算法:
step 1. 令所有弧的流量為0,從而構造一個流量為0的可行流f(稱作零流)。
step 2. 若f中找不到可改進路則轉step 5;否則找到任意一條可改進路P。
step 3. 根據P求delta。
step 4. 以delta為改進量,更新可行流f。轉step 2。
step 5. 演算法結束。此時的f即為最大流。
下面給出一道題目便於理解,並附上程式碼
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<limits.h>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
#define maxn 205
#define inf 0x7fffffff
int path[maxn][maxn];//記錄殘留網路的容量
int flow[maxn];//標記從原點到當前節點實際還剩多少流量
int pre[maxn];//標記在這條路徑上當前節點的前驅,同時標記該節點是否在佇列中
int n,m;
queue<int>q;
int bfs(int start,int end)
{
while(!q.empty()) //清空佇列
q.pop();
memset(pre,-1,sizeof(pre));
pre[start]=0;
q.push(start);
flow[start]=inf;
while(!q.empty())
{
int now=q.front();
q.pop();
if(now==end)//找到了增廣路徑
break;
for(int i=1;i<=m;i++)
{
if(i==now)
continue;
if(path[now][i]>0 && pre[i]==-1)
{
pre[i]=now;
flow[i]=min(path[now][i],flow[now]);
q.push(i);
}
}
}
if(pre[end]==-1)//殘留網路中不存在增廣路
return 0;
else
return flow[end];
}
int maxflow(int start,int end)
{
int ans;
int sum=0;
while((ans=bfs(start,end))!=0)
{
int k=end;//利用前驅尋找路徑
while(k!=start)
{
int last=pre[k];
path[last][k]-=ans;
path[k][last]+=ans;//正向最小流量等於方向最大流量(自己的理解)
k=last;
}
sum+=ans;
}
return sum;
}
int main()
{
int i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(path,0,sizeof(path));
memset(flow,0,sizeof(flow));
int a,b,c;
for(i=1;i<=n;i++)
{
scanf("%d%d%d",&a,&b,&c);
if(a==b)//考慮起點和終點相同的情況
continue;
path[a][b]+=c;//相同的起點和終點之間不止一條邊
}
printf("%d\n",maxflow(1,m));
}
}