opencv2實現多張圖片路線路牌檢測_計算機視覺大作業2
阿新 • • 發佈:2019-01-22
linefinder.h同上一篇博文
main.cpp
/*------------------------------------------------------------------------------------------*\ This file contains material supporting chapter 7 of the cookbook: Computer Vision Programming using the OpenCV Library. by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify, and distribute this source code, or portions thereof, for any purpose, without fee, subject to the restriction that the copyright notice may not be removed or altered from any source or altered source distribution. The software is released on an as-is basis and without any warranties of any kind. In particular, the software is not guaranteed to be fault-tolerant or free from failure. The author disclaims all warranties with regard to this software, any use, and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name \*------------------------------------------------------------------------------------------*/ #include <iostream> #include <vector> #include <opencv2/core/core.hpp> //#include <opencv2/imageproc/imageproc.hpp> #include <opencv2/highgui/highgui.hpp> #include<string> #include <sstream> #include "linefinder.h" //#include "edgedetector.h" using namespace cv; using namespace std; #define PI 3.1415926 int main() { stringstream ss; string str; for(int i=1;i<=80;i++) { str="D:\\大學課程\\智慧技術2-2\\視覺作業\\視覺作業\\作業2014\\作業2\\";//選擇F:\\圖片\\中的5張圖片 ss.clear(); ss<<str; ss<<i; ss<<".jpg"; ss>>str; Mat image=imread(str,1); // Read input image //Mat image= imread("1.jpg",1); if (!image.data) return 0; /*namedWindow("Original Image"); imshow("Original Image",image);*/ Mat img=image(Rect(0.4*image.cols,0.58*image.rows,0.4*image.cols,0.3*image.rows)); Mat contours; Canny(img,contours,80,100); cv::Mat contoursInv; cv::threshold(contours,contoursInv,128,255,cv::THRESH_BINARY_INV); // Display the image of contours /*cv::namedWindow("Canny Contours"); cv::imshow("Canny Contours",contoursInv);*/ // Create LineFinder instance LineFinder ld; // Set probabilistic Hough parameters ld.setLineLengthAndGap(80,30); ld.setMinVote(30); vector<Vec4i> li= ld.findLines(contours); ld.drawDetectedLines(img); /*namedWindow(" HoughP"); imshow(" HoughP",img);*/ /*namedWindow("Detected Lines with HoughP"); imshow("Detected Lines with HoughP",image);*/ Mat imgGry; cvtColor(image,imgGry,CV_BGR2GRAY); GaussianBlur(imgGry,imgGry,Size(5,5),1.5); vector<Vec3f> circles; HoughCircles(imgGry, circles, CV_HOUGH_GRADIENT, 2, // accumulator resolution (size of the image / 2) 50, // minimum distance between two circles 200, // Canny high threshold 100, // minimum number of votes 25, 50); // min and max radius cout << "Circles: " << circles.size() << endl; // Draw the circles vector<Vec3f>::const_iterator itc= circles.begin(); while (itc!=circles.end()) { circle(image, Point((*itc)[0], (*itc)[1]), // circle centre (*itc)[2], // circle radius Scalar(255), // color 2); // thickness ++itc; } namedWindow(str); imshow(str,image); } waitKey(); return 0; }