sqrt函式實現
我們平時經常會有一些資料運算的操作,需要呼叫sqrt,exp,abs等函式,那麼時候你有沒有想過:這個些函式系統是如何實現的?就拿最常用的sqrt函式來說吧,系統怎麼來實現這個經常呼叫的函式呢?
雖然有可能你平時沒有想過這個問題,不過正所謂是“臨陣磨槍,不快也光”,你“眉頭一皺,計上心來”,這個不是太簡單了嘛,用二分的方法,在一個區間中,每次拿中間數的平方來試驗,如果大了,就再試左區間的中間數;如果小了,就再拿右區間的中間數來試。比如求sqrt(16)的結果,你先試(0+16)/2=8,8*8=64,64比16大,然後就向左移,試(0+8)/2=4,4*4=16剛好,你得到了正確的結果sqrt(16)=4。然後你三下五除二就把程式寫出來了:
float SqrtByBisection(float n) //用二分法 { if(n<0) //小於0的按照你需要的處理 return n; float mid,last; float low,up; low=0,up=n; mid=(low+up)/2; do { if(mid*mid>n) up=mid; else low=mid; last=mid; mid=(up+low)/2; }while(abs(mid-last) > eps);//精度控制 return mid; }
然後看看和系統函式效能和精度的差別(其中時間單位不是秒也不是毫秒,而是CPU Tick,不管單位是什麼,統一了就有可比性)
從圖中可以看出,二分法和系統的方法結果上完全相同,但是效能上整整差了幾百倍。為什麼會有這麼大的區別呢?難道系統有什麼更好的辦法?難道。。。。哦,對了,回憶下我們曾經的高數課,曾經老師教過我們“牛頓迭代法快速尋找平方根”,或者這種方法可以幫助我們,具體步驟如下:
求出根號a的近似值:首先隨便猜一個近似值x,然後不斷令x等於x和a/x的平均數,迭代個六七次後x的值就已經相當精確了。
例如,我想求根號2等於多少。假如我猜測的結果為4,雖然錯的離譜,但你可以看到使用牛頓迭代法後這個值很快就趨近於根號2了:
( 4 + 2/4 ) / 2 = 2.25
( 2.25 + 2/2.25 ) / 2 = 1.56944..
( 1.56944..+ 2/1.56944..) / 2 = 1.42189..
( 1.42189..+ 2/1.42189..) / 2 = 1.41423..
....
這種演算法的原理很簡單,我們僅僅是不斷用(x,f(x))的切線來逼近方程x^2-a=0的根。根號a實際上就是x^2-a=0的一個正實根,這個函式的導數是2x。也就是說,函式上任一點(x,f(x))處的切線斜率是2x。那麼,x-f(x)/(2x)就是一個比x更接近的近似值。代入 f(x)=x^2-a得到x-(x^2-a)/(2x),也就是(x+a/x)/2。
相關的程式碼如下:
float SqrtByNewton(float x) { float val = x;//最終 float last;//儲存上一個計算的值 do { last = val; val =(val + x/val) / 2; }while(abs(val-last) > eps); return val; }
然後我們再來看下效能測試:
哇塞,效能提高了很多,可是和系統函式相比,還是有這麼大差距,這是為什麼呀?想啊想啊,想了很久仍然百思不得其解。突然有一天,我在網上看到一個神奇的方法,於是就有了今天的這篇文章,廢話不多說,看程式碼先:
float InvSqrt(float x) { float xhalf = 0.5f*x; int i = *(int*)&x; // get bits for floating VALUE i = 0x5f375a86- (i>>1); // gives initial guess y0 x = *(float*)&i; // convert bits BACK to float x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy return 1/x; }
然後我們最後一次來看下效能測試:
這次真的是質變了,結果竟然比系統的還要好。。。哥真的是震驚了!!!哥吐血了!!!一個函式引發了血案!!!血案,血案。。。
到現在你是不是還不明白那個“鬼函式”,到底為什麼速度那麼快嗎?不急,先看看下面的故事吧:
Quake-III Arena (雷神之錘3)是90年代的經典遊戲之一。該系列的遊戲不但畫面和內容不錯,而且即使計算機配置低,也能極其流暢地執行。這要歸功於它3D引擎的開發者約翰-卡馬克(John Carmack)。事實上早在90年代初DOS時代,只要能在PC上搞個小動畫都能讓人驚歎一番的時候,John Carmack就推出了石破天驚的Castle Wolfstein, 然後再接再勵,doom, doomII, Quake...每次都把3-D技術推到極致。他的3D引擎程式碼資極度高效,幾乎是在壓榨PC機的每條運算指令。當初MS的Direct3D也得聽取他的意見,修改了不少API。
最近,QUAKE的開發商ID SOFTWARE 遵守GPL協議,公開了QUAKE-III的原始碼,讓世人有幸目睹Carmack傳奇的3D引擎的原碼。這是QUAKE-III原始碼的下載地址:
http://www.fileshack.com/file.x?fid=7547
我們知道,越底層的函式,呼叫越頻繁。3D引擎歸根到底還是數學運算。那麼找到最底層的數學運算函式(在game/code/q_math.c), 必然是精心編寫的。裡面有很多有趣的函式,很多都令人驚奇,估計我們幾年時間都學不完。在game/code/q_math.c裡發現了這樣一段程式碼。它的作用是將一個數開平方並取倒,經測試這段程式碼比(float)(1.0/sqrt(x))快4倍:
float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // what the fuck? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE? #endif #endif return y; }
函式返回1/sqrt(x),這個函式在影象處理中比sqrt(x)更有用。
注意到這個函式只用了一次疊代!(其實就是根本沒用疊代,直接運算)。編譯,實驗,這個函式不僅工作的很好,而且比標準的sqrt()函式快4倍!要知道,編譯器自帶的函式,可是經過嚴格仔細的彙編優化的啊!
這個簡潔的函式,最核心,也是最讓人費解的,就是標註了“what the fuck?”的一句
i = 0x5f3759df - ( i >> 1 );
再加上y = y * ( threehalfs - ( x2 * y * y ) );
兩句話就完成了開方運算!而且注意到,核心那句是定點移位運算,速度極快!特別在很多沒有乘法指令的RISC結構CPU上,這樣做是極其高效的。
演算法的原理其實不復雜,就是牛頓迭代法,用x-f(x)/f'(x)來不斷的逼近f(x)=a的根。
沒錯,一般的求平方根都是這麼迴圈迭代算的但是卡馬克(quake3作者)真正牛B的地方是他選擇了一個神祕的常數0x5f3759df 來計算那個猜測值,就是我們加註釋的那一行,那一行算出的值非常接近1/sqrt(n),這樣我們只需要2次牛頓迭代就可以達到我們所需要的精度。好吧如果這個還不算NB,接著看:
普渡大學的數學家Chris Lomont看了以後覺得有趣,決定要研究一下卡馬克弄出來的這個猜測值有什麼奧祕。Lomont也是個牛人,在精心研究之後從理論上也推匯出一個最佳猜測值,和卡馬克的數字非常接近, 0x5f37642f。卡馬克真牛,他是外星人嗎?
傳奇並沒有在這裡結束。Lomont計算出結果以後非常滿意,於是拿自己計算出的起始值和卡馬克的神祕數字做比賽,看看誰的數字能夠更快更精確的求得平方根。結果是卡馬克贏了... 誰也不知道卡馬克是怎麼找到這個數字的。
最後Lomont怒了,採用暴力方法一個數字一個數字試過來,終於找到一個比卡馬克數字要好上那麼一丁點的數字,雖然實際上這兩個數字所產生的結果非常近似,這個暴力得出的數字是0x5f375a86。
參考:<IEEE Standard 754 for Binary Floating-Point Arithmetic><FAST INVERSE SQUARE ROOT>
最後,給出最精簡的1/sqrt()函式:
float InvSqrt(float x) { float xhalf = 0.5f*x; int i = *(int*)&x; // get bits for floating VALUE i = 0x5f375a86- (i>>1); // gives initial guess y0 x = *(float*)&i; // convert bits BACK to float x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy return x; }
大家可以嘗試在PC機、51、AVR、430、ARM、上面編譯並實驗,驚訝一下它的工作效率。
前兩天有一則新聞,大意是說 Ryszard Sommefeldt 很久以前看到這麼樣的一段 code (可能出自 Quake III 的 source code):
float InvSqrt (float x) { float xhalf = 0.5f*x; int i = *(int*)&x; i = 0x5f3759df - (i>>1); x = *(float*)&i; x = x*(1.5f - xhalf*x*x); return x; }他一看之下驚為天人,想要拜見這位前輩高人,但是一路追尋下去卻一直找不到人;同時間也有其他人在找,雖然也沒找到出處,但是 Chris Lomont 寫了一篇論文 (in PDF) 解析這段 code 的演算法 (用的是 Newton’s Method,牛頓法;比較重要的是後半段講到怎麼找出神奇的 0x5f3759df 的)。
PS. 這個 function 之所以重要,是因為求 開根號倒數 這個動作在 3D 運算 (向量運算的部份) 裡面常常會用到,如果你用最原始的 sqrt() 然後再倒數的話,速度比上面的這個版本大概慢了四倍吧… XD
PS2. 在他們追尋的過程中,有人提到一份叫做 MIT HACKMEM 的檔案,這是 1970 年代的 MIT 強者們做的一些筆記 (hack memo),大部份是 algorithm,有些 code 是 PDP-10 asm 寫的,另外有少數是 C code (有人整理了一份列表)
好了,故事就到這裡結束了,希望大家能有有收穫:),我把原始碼也提供下載了,有興趣的朋友們可以自己執行下試試看。
求平方根倒數的演算法
下面這個求 的函式號稱比直接呼叫sqrt庫函式快4倍,來自遊戲Quake III的原始碼。
float InvSqrt (float x){ float xhalf = 0.5f*x; int i = *(int*)&x; i = 0x5f3759df - (i>>1); y = *(float*)&i; y = y*(1.5f - xhalf*x*x); return x; }
我們這裡分析一下它的原理(指程式的正確性,而不是解釋為何快)。
分析程式之前,我們必須解釋一下float資料在計算機裡的表示方式。一般而言,一個float資料 共32個bit,和int資料一樣。其中前23位為有效數字 ,後面接著一個8位資料 表示指數,最後一位表示符號,由於這裡被開方的數總是大於0,所以我們暫不考慮最後一個符號位。此時
如果我們把計算機內的浮點數 看做一個整數 ,那麼
現在開始逐步分析函式。這個函式的主體有四個語句,分別的功能是:
int i = *(int*)&x; 這條語句把 轉成 。
i = 0x5f3759df - (i>>1); 這條語句從 計算 。
y = *(float*)&i; 這條語句將 轉換為 。
y = y*(1.5f - xhalf*y*y); 這時候的y是近似解;此步就是經典的牛頓迭代法。迭代次數越多越準確。
關鍵是第二步 i = 0x5f3759df - (i>>1); 這條語句從 計算 ,原理:
令 ,用 和 帶入之後兩邊取對數,再利用近似表示 ,算一算就得到
若取 , 就是程式裡所用的常量0x5f3759df。至於為何選擇這個 ,則應該是曲線擬合實驗的結果。