PyTorch學習(9)—優化器(optimizer)
阿新 • • 發佈:2019-01-24
本篇部落格介紹如何在pytorch中加速神經網路的訓練過程。
可以採用SGD、Momentum、AdaGrad、RMSProp、Adam等來加快神經網路的訓練過程。
示例程式碼:
import torch import torch.utils.data as Data import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt # 超引數 LR = 0.01 BATCH_SIZE = 32 EPOCH = 12 # 生成假資料 # torch.unsqueeze() 的作用是將一維變二維,torch只能處理二維的資料 x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1) # x data (tensor), shape(100, 1) # 0.2 * torch.rand(x.size())增加噪點 y = x.pow(2) + 0.1 * torch.normal(torch.zeros(*x.size())) # 輸出資料圖 # plt.scatter(x.numpy(), y.numpy()) # plt.show() torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y) loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0) class Net(torch.nn.Module): # 初始化 def __init__(self): super(Net, self).__init__() self.hidden = torch.nn.Linear(1, 20) self.predict = torch.nn.Linear(20, 1) # 前向傳遞 def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x net_SGD = Net() net_Momentum = Net() net_RMSProp = Net() net_Adam = Net() nets = [net_SGD, net_Momentum, net_RMSProp, net_Adam] opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR) opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8) opt_RMSProp = torch.optim.RMSprop(net_RMSProp.parameters(), lr=LR, alpha=0.9) opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99)) optimizers = [opt_SGD, opt_Momentum, opt_RMSProp, opt_Adam] loss_func = torch.nn.MSELoss() loss_his = [[], [], [], []] # 記錄損失 for epoch in range(EPOCH): print(epoch) for step, (batch_x, batch_y) in enumerate(loader): b_x = Variable(batch_x) b_y = Variable(batch_y) for net, opt,l_his in zip(nets, optimizers, loss_his): output = net(b_x) # get output for every net loss = loss_func(output, b_y) # compute loss for every net opt.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients opt.step() # apply gradients l_his.append(loss.data.numpy()) # loss recoder labels = ['SGD', 'Momentum', 'RMSprop', 'Adam'] for i, l_his in enumerate(loss_his): plt.plot(l_his, label=labels[i]) plt.legend(loc='best') plt.xlabel('Steps') plt.ylabel('Loss') plt.ylim((0, 0.2)) plt.show()
執行結果: