1. 程式人生 > >BZOJ2738 矩陣乘法(整體二分+樹狀數組)

BZOJ2738 矩陣乘法(整體二分+樹狀數組)

單個 直接 def string color matrix opera 樹狀 []

  單個詢問二分答案再二維BIT即可,多組詢問直接整體二分。註意保證復雜度。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 510
#define M 60010
char getc(){char c=getchar();while ((c<A||c>
Z)&&(c<a||c>z)&&(c<0||c>9)) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<0||c>9) {if (c==-) f=-1;c=getchar();} while (c>=0&&c<=9) x=(x<<1)+(x<<3
)+(c^48),c=getchar(); return x*f; } int n,m,a[N][N],ans[M],tree[N][N],t; struct data{int xl,yl,xr,yr,k,i; }q[M],p[M]; struct data2 { int x,y,k; bool operator <(const data2&a) const { return k<a.k; } }b[N*N]; int query(int x,int y) { int s=0; for (int i=x;i;i^=i&-i)
for (int j=y;j;j^=j&-j) s+=tree[i][j]; return s; } void add(int x,int y,int p) { for (int i=x;i<=n;i+=i&-i) for (int j=y;j<=n;j+=j&-j) tree[i][j]+=p; } int query(int xl,int yl,int xr,int yr){return query(xr,yr)-query(xl-1,yr)-query(xr,yl-1)+query(xl-1,yl-1);} void solve(int l,int r,int x,int y) { if (l>r) return; if (x==y) { for (int i=l;i<=r;i++) ans[q[i].i]=b[x].k; return; } int mid=x+y>>1,L=l,R=r; for (int i=x;i<=mid;i++) add(b[i].x,b[i].y,1); for (int i=l;i<=r;i++) { int u=query(q[i].xl,q[i].yl,q[i].xr,q[i].yr); if (u<q[i].k) q[i].k-=u,p[R--]=q[i]; else p[L++]=q[i]; } for (int i=l;i<=r;i++) q[i]=p[i]; for (int i=x;i<=mid;i++) add(b[i].x,b[i].y,-1); solve(l,L-1,x,mid); solve(R+1,r,mid+1,y); } int main() { #ifndef ONLINE_JUDGE freopen("matrix.in","r",stdin); freopen("matrix.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif n=read(),m=read(); for (int i=1;i<=n;i++) for (int j=1;j<=n;j++) { a[i][j]=read(); t++;b[t].k=a[i][j],b[t].x=i,b[t].y=j; } sort(b+1,b+t+1); for (int i=1;i<=m;i++) q[i].xl=read(),q[i].yl=read(),q[i].xr=read(),q[i].yr=read(),q[i].k=read(),q[i].i=i; solve(1,m,1,n*n); for (int i=1;i<=m;i++) printf("%d\n",ans[i]); return 0; }

BZOJ2738 矩陣乘法(整體二分+樹狀數組)