利用LSTM預測股票日最高價
阿新 • • 發佈:2019-01-27
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
f=open('G:\\Kaggle\\RNN\\LSTM\\dataset_1.csv')
df=pd.read_csv(f)
data=np.array(df['max'])
#資料按照日期從前往後排列
data=data[::-1]
plt.figure()
plt.plot(data)
plt.show()
#標準化
normalize_data=(data-np.mean(data ))/np.std(data)
#增加維度
normalize_data=normalize_data[:,np.newaxis]
#----------------------形成訓練集-------------------------#
#設定常量
time_step=20 #時間步
rnn_unit=10 #隱藏層神經單元
batch_size=60 #每一批次訓練多少個樣例
input_size=1 #輸入層維度
output_size=1 #輸出層維度
lr=0.0006 #學習率
#生成訓練集
train_x,train_y=[],[]
for i in range(len(normalize_data)-time_step-1):
x=normalize_data[i:i+time_step]
y=normalize_data[i+1:i+time_step+1]
train_x.append(x.tolist())
train_y.append(y.tolist())
In [5]:
#每批次輸入的tensor
X=tf.placeholder(tf.float32, [None,time_step,input_size])
#每批次Tensor的對應的標籤
Y=tf.placeholder(tf.float32, [None ,time_step,output_size])
#輸入層、輸出層權重、偏置
weights={
'in':tf.Variable(tf.random_normal([input_size,rnn_unit])),
'out':tf.Variable(tf.random_normal([rnn_unit,1]))
}
biases={
'in':tf.Variable(tf.constant(0.1,shape=[rnn_unit,])),
'out':tf.Variable(tf.constant(0.1,shape=[1,]))
}
def lstm(batch): #引數:輸入網路批次數目
w_in=weights['in']
b_in=biases['in']
#需要將tensor轉成2維進行計算,計算後的結果作為隱藏層的輸入
input=tf.reshape(X,[-1,input_size])
input_rnn=tf.matmul(input,w_in)+b_in
#將tensor轉成3維,作為lstm cell的輸入
input_rnn=tf.reshape(input_rnn,[-1,time_step,rnn_unit])
cell=tf.contrib.rnn.BasicLSTMCell(rnn_unit,reuse=tf.get_variable_scope().reuse)
init_state=cell.zero_state(batch,dtype=tf.float32)
#output_rnn是記錄lstm每個輸出節點的結果,final_states是最後一個cell的結果
output_rnn,final_states=tf.nn.dynamic_rnn(cell, input_rnn,initial_state=init_state, dtype=tf.float32)
output=tf.reshape(output_rnn,[-1,rnn_unit])
w_out=weights['out']
b_out=biases['out']
pred=tf.matmul(output,w_out)+b_out
return pred,final_states
def train_lstm():
global batch_size
with tf.variable_scope("sec_lstm"):
pred,_=lstm(batch_size)
#定義損失函式
loss=tf.reduce_mean(tf.square(tf.reshape(pred,[-1])-tf.reshape(Y, [-1])))
train_op=tf.train.AdamOptimizer(lr).minimize(loss)
saver=tf.train.Saver(tf.global_variables())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#訓練1000次,可以增加次數
for i in range(10):
step=0
start=0
end=start+batch_size
while(end<len(train_x)):
_,loss_=sess.run([train_op,loss],feed_dict={X:train_x[start:end],Y:train_y[start:end]})
start+=batch_size
end=start+batch_size
#每10步儲存一次引數
if step%10==0:
print("Number of iterations:",i," loss:",loss_)
print("model_save",\
saver.save(sess,\
'G:\\Kaggle\\RNN\\LSTM\\model_save1\\modle.ckpt'))
#執行在windows 10,使用'model_save1\\modle.ckpt'
#執行在Linux,使用 'model_save1/modle.ckpt'
step+=1
print("The train has finished")
train_lstm()
Number of iterations: 0 loss: 11.3699 model_save C:\Users\shaoqiu\Desktop\RNN\LSTM\model_save1\modle.ckpt
Number of iterations: 0 loss: 2.35093 model_save C:\Users\shaoqiu\Desktop\RNN\LSTM\model_save1\modle.ckpt
Number of iterations: 0 loss: 2.44522 model_save C:\Users\shaoqiu\Desktop\RNN\LSTM\model_save1\modle.ckpt
……
def prediction():
with tf.variable_scope("sec_lstm",reuse=True):
pred,_=lstm(1)
saver=tf.train.Saver(tf.global_variables())
with tf.Session() as sess:
saver.restore(sess, 'G:\\Kaggle\\RNN\\LSTM\\model_save1\\modle.ckpt')
prev_seq=train_x[-1]
predict=[]
for i in range(100):
next_seq=sess.run(pred,feed_dict={X:[prev_seq]})
predict.append(next_seq[-1])
prev_seq=np.vstack((prev_seq[1:],next_seq[-1]))
plt.figure()
plt.plot(list(range(len(normalize_data))), normalize_data, color='b')
plt.plot(list(range(len(normalize_data), len(normalize_data) + len(predict))), predict, color='r')
plt.show()
prediction()
#INFO:tensorflow:Restoring parameters from G:\Kaggle\RNN\LSTM\model_save1\modle.ckpt