圓檢測(續)- RANSAC
繼之前提到的兩種方法之後,這裡再列出基於RANSAC的圓檢測,RANSAC(Random Sample Consensus)隨機抽樣一致性,略不同於霍夫圓變換那種基於投票的策略,這是一種對觀測資料進行最大化模型檢驗的方法。下面來簡單介紹一下它的原理:
1、原理
最小二乘法通常用線上性擬合引數中,但一旦最小二乘法輸入的觀測資料中包含有大量分散的干擾點時,它擬合出來的效果可能並不好,如可能會出現這樣的情況:
可以看到,擬合出來的直線與期望有效點之間的重合率不高,也就代表著它的代價函式
Ransac的思路是隨機通過幾個點用最小二乘法給出一個假設的直線,然後計算在直線內的inliers和在直線範圍外的outliers。對所有可能的直線中找出inliers數目最多的那個,也就能找到最好的直線。
演算法步驟:
(1) 隨機地抽取出所需要數目的點去擬合模型:
綠色的點代表取樣的點
(2)用樣本求出模型引數:
(3)在設定好直線的閾值範圍中區分出inliers和outliers,並求內點佔觀測資料的比:
重複步驟1-3直到找出置信度最高的模型
RANSAC幾點要注意的:
① 只有outliers%<50%時,得到的模型才是有保證的。
②inliers的閾值
③ 重複1-3步驟的次數跟模型的outliers佔比和我們所需要多高的置信度有關,可以用下面公式表示:
其中,S是所需最小試驗的次數,P是置信度,p是inliers佔的百分比數,k是隨機取樣的數目。
2、實際例子
這裡用網友Micka的程式碼來舉例:
#include <opencv2/opencv.hpp>
#include <ctime>
float verifyCircle(cv::Mat dt, cv::Point2f center, float radius, std::vector<cv::Point2f> & inlierSet)
{
unsigned int counter = 0;
unsigned int inlier = 0;
float minInlierDist = 2.0f;
float maxInlierDistMax = 100.0f;
float maxInlierDist = radius/25.0f;
if(maxInlierDist<minInlierDist) maxInlierDist = minInlierDist;
if(maxInlierDist>maxInlierDistMax) maxInlierDist = maxInlierDistMax;
// choose samples along the circle and count inlier percentage
for(float t =0; t<2*3.14159265359f; t+= 0.05f)
{
counter++;
float cX = radius*cos(t) + center.x;
float cY = radius*sin(t) + center.y;
if(cX < dt.cols)
if(cX >= 0)
if(cY < dt.rows)
if(cY >= 0)
if(dt.at<float>(cY,cX) < maxInlierDist)
{
inlier++;
inlierSet.push_back(cv::Point2f(cX,cY));
}
}
return (float)inlier/float(counter);
}
inline void getCircle(cv::Point2f& p1,cv::Point2f& p2,cv::Point2f& p3, cv::Point2f& center, float& radius)
{
float x1 = p1.x;
float x2 = p2.x;
float x3 = p3.x;
float y1 = p1.y;
float y2 = p2.y;
float y3 = p3.y;
// PLEASE CHECK FOR TYPOS IN THE FORMULA :)
center.x = (x1*x1+y1*y1)*(y2-y3) + (x2*x2+y2*y2)*(y3-y1) + (x3*x3+y3*y3)*(y1-y2);
center.x /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
center.y = (x1*x1 + y1*y1)*(x3-x2) + (x2*x2+y2*y2)*(x1-x3) + (x3*x3 + y3*y3)*(x2-x1);
center.y /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
radius = sqrt((center.x-x1)*(center.x-x1) + (center.y-y1)*(center.y-y1));
}
std::vector<cv::Point2f> getPointPositions(cv::Mat binaryImage)
{
std::vector<cv::Point2f> pointPositions;
for(unsigned int y=0; y<binaryImage.rows; ++y)
{
//unsigned char* rowPtr = binaryImage.ptr<unsigned char>(y);
for(unsigned int x=0; x<binaryImage.cols; ++x)
{
//if(rowPtr[x] > 0) pointPositions.push_back(cv::Point2i(x,y));
if(binaryImage.at<unsigned char>(y,x) > 0) pointPositions.push_back(cv::Point2f(x,y));
}
}
return pointPositions;
}
int main()
{
clock_t starttime, endtime;
starttime = clock();
cv::Mat color = cv::imread("1.jpg");
cv::Mat gray;
// convert to grayscale
// you could load as grayscale if you want, but I used it for (colored) output too
cv::cvtColor(color, gray, CV_BGR2GRAY);
cv::Mat mask;
float canny1 = 100;
float canny2 = 20;
cv::Mat canny;
cv::Canny(gray, canny, canny1,canny2);
//cv::imshow("canny",canny);
mask = canny;
std::vector<cv::Point2f> edgePositions;
edgePositions = getPointPositions(mask);
// create distance transform to efficiently evaluate distance to nearest edge
cv::Mat dt;
cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);
//TODO: maybe seed random variable for real random numbers.
unsigned int nIterations = 0;
cv::Point2f bestCircleCenter;
float bestCircleRadius;
float bestCirclePercentage = 0;
float minRadius = 10; // TODO: ADJUST THIS PARAMETER TO YOUR NEEDS, otherwise smaller circles wont be detected or "small noise circles" will have a high percentage of completion
//float minCirclePercentage = 0.2f;
float minCirclePercentage = 0.05f; // at least 5% of a circle must be present? maybe more...
int maxNrOfIterations = edgePositions.size(); // TODO: adjust this parameter or include some real ransac criteria with inlier/outlier percentages to decide when to stop
printf("%d\n", maxNrOfIterations);
for(unsigned int its=0; its< maxNrOfIterations; ++its)
{
//RANSAC: randomly choose 3 point and create a circle:
//TODO: choose randomly but more intelligent,
//so that it is more likely to choose three points of a circle.
//For example if there are many small circles, it is unlikely to randomly choose 3 points of the same circle.
unsigned int idx1 = rand()%edgePositions.size();
unsigned int idx2 = rand()%edgePositions.size();
unsigned int idx3 = rand()%edgePositions.size();
// we need 3 different samples:
if(idx1 == idx2) continue;
if(idx1 == idx3) continue;
if(idx3 == idx2) continue;
// create circle from 3 points:
cv::Point2f center; float radius;
getCircle(edgePositions[idx1],edgePositions[idx2],edgePositions[idx3],center,radius);
// inlier set unused at the moment but could be used to approximate a (more robust) circle from alle inlier
std::vector<cv::Point2f> inlierSet;
//verify or falsify the circle by inlier counting:
float cPerc = verifyCircle(dt,center,radius, inlierSet);
// update best circle information if necessary
if(cPerc >= bestCirclePercentage)
if(radius >= minRadius)
{
bestCirclePercentage = cPerc;
bestCircleRadius = radius;
bestCircleCenter = center;
}
}
std::cout << "bestCirclePerc: " << bestCirclePercentage << std::endl;
std::cout << "bestCircleRadius: " << bestCircleRadius << std::endl;
// draw if good circle was found
if(bestCirclePercentage >= minCirclePercentage)
if(bestCircleRadius >= minRadius);
cv::circle(color, bestCircleCenter,bestCircleRadius, cv::Scalar(255,255,0),1);
std::cout << "the used time is: "<<clock()-starttime <<std::endl;
cv::imshow("output",color);
cv::imshow("mask",mask);
//cv::imwrite("../outputData/1_circle_normalized.png", normalized);
cv::waitKey(0);
return 0;
}
他的思路是:
1. 用Canny提取邊緣點, 用distanceTransform得到距離邊緣點的距離圖;
2. 隨機抽取三個不同的點解方程,三個方程三個未知數,有解;
3. 將2得到的圓周上的點與1中對應位置的點進行比較,看是否屬於inliers,隨後輸出百分比;
4. 找出最大百分比對應的圓就是RANSAC得到的圓。
3、比較霍夫變換跟RANSAC:
魯棒性來說,霍夫變換要穩定一點;
速度來說,霍夫變換要快,而且其所需時間變化不大,100ms左右能夠完成;
RANSAC跟HoughTranform的引數調節都很麻煩,相對來說,霍夫變換更加簡單一點;
RANSAC擬合的程度可能會更高,但受到outliers%<50%這個條件限制。
所以綜合來說,HoughTransform的應用更廣,效率更高,某些情況下,它不能很好地找到合理的圓,這時可以將RANSAC加進去進行優化,可能精度會高很多。
參考資料: