1. 程式人生 > >Arduino的一些使用記錄,用的Pulse Sensor,HC06藍芽

Arduino的一些使用記錄,用的Pulse Sensor,HC06藍芽

目標是使用Pulse Sensor 獲取心跳等資訊,通過藍芽模組(HC06)傳遞到手機APP,做如下記錄

avrdude: stk500_getsync() attempt 1 of 10: not in sync: resp=0x00
avrdude: stk500_getsync() attempt 2 of 10: not in sync: resp=0x00
avrdude: stk500_getsync() attempt 3 of 10: not in sync: resp=0x00
avrdude: stk500_getsync() attempt 4 of 10: not in sync: resp=0x00
avrdude: stk500_getsync() attempt 5
of 10: not in sync: resp=0x00 avrdude: stk500_getsync() attempt 6 of 10: not in sync: resp=0x00 avrdude: stk500_getsync() attempt 7 of 10: not in sync: resp=0x00 avrdude: stk500_getsync() attempt 8 of 10: not in sync: resp=0x00 avrdude: stk500_getsync() attempt 9 of 10: not in sync: resp=0x00 avrdude: stk500_getsync() attempt 10
of 10: not in sync: resp=0x00 上傳專案出錯

報這個錯誤需要把Arduino上RX和TX上的連線線斷開,編譯上傳完程式碼再連上即可

HC06的藍芽連線方式,這裡用到了8和9,可以修改,解釋如下:

 測試通訊之前首先要了解一下通訊的流程
 PC電腦連線微控制器,微控制器連線藍芽模組
 在電腦上用串列埠傳送AT指令到微控制器
 微控制器接收到指令後通過數字口9傳送指令到藍芽模組的RX端
 藍芽模組接收指令後通過TX傳送給微控制器數字口8
 微控制器通過數字口8接收指令後再通過usb線輸出到pc電腦
 【連線】
 數字口8----TXD
 數字口9----RXD
VCC-----VCC GND-----GND 注:千萬注意,VCC和GND不要接錯

Pulse Sensor連線方式如下:

Pulse Sensor一共有三根線,分別是s,+,-
s ------------ A0
+ (VCC)------- VCC
- (GND)------- GND

也是剛開始學習這一部分的內容,歡迎交流

Arduino的全部原始碼如下:


/*
>> Pulse Sensor Amped 1.2 <<
This code is for Pulse Sensor Amped by Joel Murphy and Yury Gitman
    www.pulsesensor.com 
    >>> Pulse Sensor purple wire goes to Analog Pin 0 <<<
Pulse Sensor sample aquisition and processing happens in the background via Timer 2 interrupt. 2mS sample rate.
PWM on pins 3 and 11 will not work when using this code, because we are using Timer 2!
The following variables are automatically updated:
Signal :    int that holds the analog signal data straight from the sensor. updated every 2mS.
IBI  :      int that holds the time interval between beats. 2mS resolution.
BPM  :      int that holds the heart rate value, derived every beat, from averaging previous 10 IBI values.
QS  :       boolean that is made true whenever Pulse is found and BPM is updated. User must reset.
Pulse :     boolean that is true when a heartbeat is sensed then false in time with pin13 LED going out.

This code is designed with output serial data to Processing sketch "PulseSensorAmped_Processing-xx"
The Processing sketch is a simple data visualizer. 
All the work to find the heartbeat and determine the heartrate happens in the code below.
Pin 13 LED will blink with heartbeat.
If you want to use pin 13 for something else, adjust the interrupt handler
It will also fade an LED on pin fadePin with every beat. Put an LED and series resistor from fadePin to GND.
Check here for detailed code walkthrough:
http://pulsesensor.myshopify.com/pages/pulse-sensor-amped-arduino-v1dot1

Code Version 1.2 by Joel Murphy & Yury Gitman  Spring 2013
This update fixes the firstBeat and secondBeat flag usage so that realistic BPM is reported.

*/
#include <SoftwareSerial.h>
SoftwareSerial BT(8, 9); // RX, TX
char value;       //用於中轉資料

//  VARIABLES
int pulsePin = 0;                 // Pulse Sensor purple wire connected to analog pin 0
int blinkPin = 13;                // pin to blink led at each beat
int fadePin = 5;                  // pin to do fancy classy fading blink at each beat
int fadeRate = 0;                 // used to fade LED on with PWM on fadePin


// these variables are volatile because they are used during the interrupt service routine!
volatile int BPM;                   // used to hold the pulse rate
volatile int Signal;                // holds the incoming raw data
volatile int IBI = 600;             // holds the time between beats, must be seeded! 
volatile boolean Pulse = false;     // true when pulse wave is high, false when it's low
volatile boolean QS = false;        // becomes true when Arduoino finds a beat.


void setup(){
  pinMode(blinkPin,OUTPUT);         // pin that will blink to your heartbeat!
  pinMode(fadePin,OUTPUT);          // pin that will fade to your heartbeat!
  //Serial.begin(115200);             // we agree to talk fast!
  Serial.begin(9600);
  while (!Serial) {
        ; // 等待串列埠連線。
    }
  Serial.println("Serial Connected!");
  // 設定藍芽串列埠通訊的速率 HC06預設是9600
  BT.begin(9600);
  while (!BT) {
      ; // 等待串列埠連線。
  }
  Serial.println("BT Connected!");



  interruptSetup();                 // sets up to read Pulse Sensor signal every 2mS 
   // UN-COMMENT THE NEXT LINE IF YOU ARE POWERING The Pulse Sensor AT LOW VOLTAGE, 
   // AND APPLY THAT VOLTAGE TO THE A-REF PIN
   //analogReference(EXTERNAL);   
}



void loop(){
  if (Serial.available()) {   //檢測微控制器串列埠狀態
        value = Serial.read();
        if(value=='a'){
          Serial.println("serial hello");
        }
        BT.write(value);//藍芽模組將資料傳送給微控制器
    }

    if (BT.available()) {//檢測藍芽模組串列埠狀態
        Serial.print("blue hello + ");
        value = BT.read();
        Serial.println(value);
        if(value=="c"){
          Serial.println("go in");
        }
        Serial.write(value); //微控制器將指令傳送到藍芽模組
    }

  sendDataToProcessing('S', Signal);     // send Processing the raw Pulse Sensor data
  if (QS == true){                       // Quantified Self flag is true when arduino finds a heartbeat
        fadeRate = 255;                  // Set 'fadeRate' Variable to 255 to fade LED with pulse
        sendDataToProcessing('B',BPM);   // send heart rate with a 'B' prefix
        sendDataToProcessing('Q',IBI);   // send time between beats with a 'Q' prefix
        QS = false;                      // reset the Quantified Self flag for next time    
     }

  ledFadeToBeat();

  //delay(20);                             //  take a break
  delay(20);
}


void ledFadeToBeat(){
    fadeRate -= 15;                         //  set LED fade value
    fadeRate = constrain(fadeRate,0,255);   //  keep LED fade value from going into negative numbers!
    analogWrite(fadePin,fadeRate);          //  fade LED
  }


void sendDataToProcessing(char symbol, int data ){
    Serial.print(symbol);                // symbol prefix tells Processing what type of data is coming
    Serial.println(data);                // the data to send culminating in a carriage return
  }

///////////////////////////////////////////////////////
//Interrupt.ino
///////////////////////////////////////////////////////

volatile int rate[10];                    // array to hold last ten IBI values
volatile unsigned long sampleCounter = 0;          // used to determine pulse timing
volatile unsigned long lastBeatTime = 0;           // used to find IBI
volatile int P =512;                      // used to find peak in pulse wave, seeded
volatile int T = 512;                     // used to find trough in pulse wave, seeded
volatile int thresh = 512;                // used to find instant moment of heart beat, seeded
volatile int amp = 100;                   // used to hold amplitude of pulse waveform, seeded
volatile boolean firstBeat = true;        // used to seed rate array so we startup with reasonable BPM
volatile boolean secondBeat = false;      // used to seed rate array so we startup with reasonable BPM


void interruptSetup(){     
  // Initializes Timer2 to throw an interrupt every 2mS.
  TCCR2A = 0x02;     // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND GO INTO CTC MODE
  TCCR2B = 0x06;     // DON'T FORCE COMPARE, 256 PRESCALER 
  OCR2A = 0X7C;      // SET THE TOP OF THE COUNT TO 124 FOR 500Hz SAMPLE RATE
  TIMSK2 = 0x02;     // ENABLE INTERRUPT ON MATCH BETWEEN TIMER2 AND OCR2A
  sei();             // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED      
} 


// THIS IS THE TIMER 2 INTERRUPT SERVICE ROUTINE. 
// Timer 2 makes sure that we take a reading every 2 miliseconds
ISR(TIMER2_COMPA_vect){                         // triggered when Timer2 counts to 124
  cli();                                      // disable interrupts while we do this
  Signal = analogRead(pulsePin);              // read the Pulse Sensor 
  sampleCounter += 2;                         // keep track of the time in mS with this variable
  int N = sampleCounter - lastBeatTime;       // monitor the time since the last beat to avoid noise

    //  find the peak and trough of the pulse wave
  if(Signal < thresh && N > (IBI/5)*3){       // avoid dichrotic noise by waiting 3/5 of last IBI
    if (Signal < T){                        // T is the trough
      T = Signal;                         // keep track of lowest point in pulse wave 
    }
  }

  if(Signal > thresh && Signal > P){          // thresh condition helps avoid noise
    P = Signal;                             // P is the peak
  }                                        // keep track of highest point in pulse wave

  //  NOW IT'S TIME TO LOOK FOR THE HEART BEAT
  // signal surges up in value every time there is a pulse
  if (N > 250){                                   // avoid high frequency noise
    if ( (Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3) ){        
      Pulse = true;                               // set the Pulse flag when we think there is a pulse
      digitalWrite(blinkPin,HIGH);                // turn on pin 13 LED
      IBI = sampleCounter - lastBeatTime;         // measure time between beats in mS
      lastBeatTime = sampleCounter;               // keep track of time for next pulse

      if(secondBeat){                        // if this is the second beat, if secondBeat == TRUE
        secondBeat = false;                  // clear secondBeat flag
        for(int i=0; i<=9; i++){             // seed the running total to get a realisitic BPM at startup
          rate[i] = IBI;                      
        }
      }

      if(firstBeat){                         // if it's the first time we found a beat, if firstBeat == TRUE
        firstBeat = false;                   // clear firstBeat flag
        secondBeat = true;                   // set the second beat flag
        sei();                               // enable interrupts again
        return;                              // IBI value is unreliable so discard it
      }   


      // keep a running total of the last 10 IBI values
      word runningTotal = 0;                  // clear the runningTotal variable    

      for(int i=0; i<=8; i++){                // shift data in the rate array
        rate[i] = rate[i+1];                  // and drop the oldest IBI value 
        runningTotal += rate[i];              // add up the 9 oldest IBI values
      }

      rate[9] = IBI;                          // add the latest IBI to the rate array
      runningTotal += rate[9];                // add the latest IBI to runningTotal
      runningTotal /= 10;                     // average the last 10 IBI values 
      BPM = 60000/runningTotal;               // how many beats can fit into a minute? that's BPM!
      QS = true;                              // set Quantified Self flag 
      // QS FLAG IS NOT CLEARED INSIDE THIS ISR
    }                       
  }

  if (Signal < thresh && Pulse == true){   // when the values are going down, the beat is over
    digitalWrite(blinkPin,LOW);            // turn off pin 13 LED
    Pulse = false;                         // reset the Pulse flag so we can do it again
    amp = P - T;                           // get amplitude of the pulse wave
    thresh = amp/2 + T;                    // set thresh at 50% of the amplitude
    P = thresh;                            // reset these for next time
    T = thresh;
  }

  if (N > 2500){                           // if 2.5 seconds go by without a beat
    thresh = 512;                          // set thresh default
    P = 512;                               // set P default
    T = 512;                               // set T default
    lastBeatTime = sampleCounter;          // bring the lastBeatTime up to date        
    firstBeat = true;                      // set these to avoid noise
    secondBeat = false;                    // when we get the heartbeat back
  }

  sei();                                   // enable interrupts when youre done!
}// end isr