TensorFlow學習日記20
阿新 • • 發佈:2019-01-27
1. Auto Encoder
解析:
# -*- coding: utf-8 -*- """ Using an auto encoder on MNIST handwritten digits. """ from __future__ import division, print_function, absolute_import import numpy as np import matplotlib.pyplot as plt import tflearn # Data loading and preprocessing import tflearn.datasets.mnist as mnist X, Y, testX, testY = mnist.load_data(one_hot=True) # Building the encoder encoder = tflearn.input_data(shape=[None, 784]) encoder = tflearn.fully_connected(encoder, 256) encoder = tflearn.fully_connected(encoder, 64) # Building the decoder decoder = tflearn.fully_connected(encoder, 256) decoder = tflearn.fully_connected(decoder, 784, activation='sigmoid') # Regression, with mean square error net = tflearn.regression(decoder, optimizer='adam', learning_rate=0.001, loss='mean_square', metric=None) # Training the auto encoder model = tflearn.DNN(net, tensorboard_verbose=0) model.fit(X, X, n_epoch=20, validation_set=(testX, testX), run_id="auto_encoder", batch_size=256) # Encoding X[0] for test print("\nTest encoding of X[0]:") # New model, re-using the same session, for weights sharing encoding_model = tflearn.DNN(encoder, session=model.session) print(encoding_model.predict([X[0]])) # Testing the image reconstruction on new data (test set) print("\nVisualizing results after being encoded and decoded:") testX = tflearn.data_utils.shuffle(testX)[0] # Applying encode and decode over test set encode_decode = model.predict(testX) # Compare original images with their reconstructions f, a = plt.subplots(2, 10, figsize=(10, 2)) for i in range(10): temp = [[ii, ii, ii] for ii in list(testX[i])] a[0][i].imshow(np.reshape(temp, (28, 28, 3))) temp = [[ii, ii, ii] for ii in list(encode_decode[i])] a[1][i].imshow(np.reshape(temp, (28, 28, 3))) f.show() plt.draw() plt.waitforbuttonpress()
2. Variational Auto Encoder
解析:
# -*- coding: utf-8 -*- """ Using a variational auto-encoder to generate digits images from noise. MNIST handwritten digits are used as training examples. """ from __future__ import division, print_function, absolute_import import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm import tensorflow as tf import tflearn # Data loading and preprocessing import tflearn.datasets.mnist as mnist X, Y, testX, testY = mnist.load_data(one_hot=True) # Params original_dim = 784 # MNIST images are 28x28 pixels hidden_dim = 256 latent_dim = 2 # Building the encoder encoder = tflearn.input_data(shape=[None, 784], name='input_images') encoder = tflearn.fully_connected(encoder, hidden_dim, activation='relu') z_mean = tflearn.fully_connected(encoder, latent_dim) z_std = tflearn.fully_connected(encoder, latent_dim) # Sampler: Normal (gaussian) random distribution eps = tf.random_normal(tf.shape(z_std), dtype=tf.float32, mean=0., stddev=1.0, name='epsilon') z = z_mean + tf.exp(z_std / 2) * eps # Building the decoder (with scope to re-use these layers later) decoder = tflearn.fully_connected(z, hidden_dim, activation='relu', scope='decoder_h') decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid', scope='decoder_out') # Define VAE Loss def vae_loss(x_reconstructed, x_true): # Reconstruction loss encode_decode_loss = x_true * tf.log(1e-10 + x_reconstructed) \ + (1 - x_true) * tf.log(1e-10 + 1 - x_reconstructed) encode_decode_loss = -tf.reduce_sum(encode_decode_loss, 1) # KL Divergence loss kl_div_loss = 1 + z_std - tf.square(z_mean) - tf.exp(z_std) kl_div_loss = -0.5 * tf.reduce_sum(kl_div_loss, 1) return tf.reduce_mean(encode_decode_loss + kl_div_loss) net = tflearn.regression(decoder, optimizer='rmsprop', learning_rate=0.001, loss=vae_loss, metric=None, name='target_images') # We will need 2 models, one for training that will learn the latent # representation, and one that can take random normal noise as input and # use the decoder part of the network to generate an image # Train the VAE training_model = tflearn.DNN(net, tensorboard_verbose=0) training_model.fit({'input_images': X}, {'target_images': X}, n_epoch=100, validation_set=(testX, testX), batch_size=256, run_id="vae") # Build an image generator (re-using the decoding layers) # Input data is a normal (gaussian) random distribution (with dim = latent_dim) input_noise = tflearn.input_data(shape=[None, latent_dim], name='input_noise') decoder = tflearn.fully_connected(input_noise, hidden_dim, activation='relu', scope='decoder_h', reuse=True) decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid', scope='decoder_out', reuse=True) generator_model = tflearn.DNN(decoder, session=training_model.session) # Building a manifold of generated digits n = 25 # Figure row size figure = np.zeros((28 * n, 28 * n)) # Random normal distributions to feed network with x_axis = norm.ppf(np.linspace(0., 1., n)) y_axis = norm.ppf(np.linspace(0., 1., n)) for i, x in enumerate(x_axis): for j, y in enumerate(y_axis): samples = np.array([[x, y]]) x_reconstructed = generator_model.predict({'input_noise': samples}) digit = np.array(x_reconstructed[0]).reshape(28, 28) figure[i * 28: (i + 1) * 28, j * 28: (j + 1) * 28] = digit plt.figure(figsize=(10, 10)) plt.imshow(figure, cmap='Greys_r') plt.show()
3. GAN (Generative Adversarial Networks)
解析:
# -*- coding: utf-8 -*- """ Use a generative adversarial network (GAN) to generate digit images from a noise distribution. """ from __future__ import division, print_function, absolute_import import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import tflearn # Data loading and preprocessing import tflearn.datasets.mnist as mnist X, Y, testX, testY = mnist.load_data() image_dim = 784 # 28*28 pixels z_dim = 200 # Noise data points total_samples = len(X) # Generator def generator(x, reuse=False): with tf.variable_scope('Generator', reuse=reuse): x = tflearn.fully_connected(x, 256, activation='relu') x = tflearn.fully_connected(x, image_dim, activation='sigmoid') return x # Discriminator def discriminator(x, reuse=False): with tf.variable_scope('Discriminator', reuse=reuse): x = tflearn.fully_connected(x, 256, activation='relu') x = tflearn.fully_connected(x, 1, activation='sigmoid') return x # Build Networks gen_input = tflearn.input_data(shape=[None, z_dim], name='input_noise') disc_input = tflearn.input_data(shape=[None, 784], name='disc_input') gen_sample = generator(gen_input) disc_real = discriminator(disc_input) disc_fake = discriminator(gen_sample, reuse=True) # Define Loss disc_loss = -tf.reduce_mean(tf.log(disc_real) + tf.log(1. - disc_fake)) gen_loss = -tf.reduce_mean(tf.log(disc_fake)) # Build Training Ops for both Generator and Discriminator. # Each network optimization should only update its own variable, thus we need # to retrieve each network variables (with get_layer_variables_by_scope) and set # 'placeholder=None' because we do not need to feed any target. gen_vars = tflearn.get_layer_variables_by_scope('Generator') gen_model = tflearn.regression(gen_sample, placeholder=None, optimizer='adam', loss=gen_loss, trainable_vars=gen_vars, batch_size=64, name='target_gen', op_name='GEN') disc_vars = tflearn.get_layer_variables_by_scope('Discriminator') disc_model = tflearn.regression(disc_real, placeholder=None, optimizer='adam', loss=disc_loss, trainable_vars=disc_vars, batch_size=64, name='target_disc', op_name='DISC') # Define GAN model, that output the generated images. gan = tflearn.DNN(gen_model) # Training # Generate noise to feed to the generator z = np.random.uniform(-1., 1., size=[total_samples, z_dim]) # Start training, feed both noise and real images. gan.fit(X_inputs={gen_input: z, disc_input: X}, Y_targets=None, n_epoch=100) # Generate images from noise, using the generator network. f, a = plt.subplots(2, 10, figsize=(10, 4)) for i in range(10): for j in range(2): # Noise input. z = np.random.uniform(-1., 1., size=[1, z_dim]) # Generate image from noise. Extend to 3 channels for matplot figure. temp = [[ii, ii, ii] for ii in list(gan.predict([z])[0])] a[j][i].imshow(np.reshape(temp, (28, 28, 3))) f.show() plt.draw() plt.waitforbuttonpress()
4. DCGAN (Deep Convolutional Generative Adversarial Networks)
解析:
# -*- coding: utf-8 -*-
"""
Use a deep convolutional generative adversarial network (DCGAN) to generate
digit images from a noise distribution.
"""
from __future__ import division, print_function, absolute_import
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tflearn
# Data loading and preprocessing
import tflearn.datasets.mnist as mnist
X, Y, testX, testY = mnist.load_data()
X = np.reshape(X, newshape=[-1, 28, 28, 1])
z_dim = 200 # Noise data points
total_samples = len(X)
# Generator
def generator(x, reuse=False):
with tf.variable_scope('Generator', reuse=reuse):
x = tflearn.fully_connected(x, n_units=7 * 7 * 128)
x = tflearn.batch_normalization(x)
x = tf.nn.tanh(x)
x = tf.reshape(x, shape=[-1, 7, 7, 128])
x = tflearn.upsample_2d(x, 2)
x = tflearn.conv_2d(x, 64, 5, activation='tanh')
x = tflearn.upsample_2d(x, 2)
x = tflearn.conv_2d(x, 1, 5, activation='sigmoid')
return x
# Discriminator
def discriminator(x, reuse=False):
with tf.variable_scope('Discriminator', reuse=reuse):
x = tflearn.conv_2d(x, 64, 5, activation='tanh')
x = tflearn.avg_pool_2d(x, 2)
x = tflearn.conv_2d(x, 128, 5, activation='tanh')
x = tflearn.avg_pool_2d(x, 2)
x = tflearn.fully_connected(x, 1024, activation='tanh')
x = tflearn.fully_connected(x, 2)
x = tf.nn.softmax(x)
return x
# Input Data
gen_input = tflearn.input_data(shape=[None, z_dim], name='input_gen_noise')
input_disc_noise = tflearn.input_data(shape=[None, z_dim], name='input_disc_noise')
input_disc_real = tflearn.input_data(shape=[None, 28, 28, 1], name='input_disc_real')
# Build Discriminator
disc_fake = discriminator(generator(input_disc_noise))
disc_real = discriminator(input_disc_real, reuse=True)
disc_net = tf.concat([disc_fake, disc_real], axis=0)
# Build Stacked Generator/Discriminator
gen_net = generator(gen_input, reuse=True)
stacked_gan_net = discriminator(gen_net, reuse=True)
# Build Training Ops for both Generator and Discriminator.
# Each network optimization should only update its own variable, thus we need
# to retrieve each network variables (with get_layer_variables_by_scope).
disc_vars = tflearn.get_layer_variables_by_scope('Discriminator')
# We need 2 target placeholders, for both the real and fake image target.
disc_target = tflearn.multi_target_data(['target_disc_fake', 'target_disc_real'],
shape=[None, 2])
disc_model = tflearn.regression(disc_net, optimizer='adam',
placeholder=disc_target,
loss='categorical_crossentropy',
trainable_vars=disc_vars,
batch_size=64, name='target_disc',
op_name='DISC')
gen_vars = tflearn.get_layer_variables_by_scope('Generator')
gan_model = tflearn.regression(stacked_gan_net, optimizer='adam',
loss='categorical_crossentropy',
trainable_vars=gen_vars,
batch_size=64, name='target_gen',
op_name='GEN')
# Define GAN model, that output the generated images.
gan = tflearn.DNN(gan_model)
# Training
# Prepare input data to feed to the discriminator
disc_noise = np.random.uniform(-1., 1., size=[total_samples, z_dim])
# Prepare target data to feed to the discriminator (0: fake image, 1: real image)
y_disc_fake = np.zeros(shape=[total_samples])
y_disc_real = np.ones(shape=[total_samples])
y_disc_fake = tflearn.data_utils.to_categorical(y_disc_fake)
y_disc_real = tflearn.data_utils.to_categorical(y_disc_real)
# Prepare input data to feed to the stacked generator/discriminator
gen_noise = np.random.uniform(-1., 1., size=[total_samples, z_dim])
# Prepare target data to feed to the discriminator
# Generator tries to fool the discriminator, thus target is 1 (e.g. real images)
y_gen = np.ones(shape=[total_samples])
y_gen = tflearn.data_utils.to_categorical(y_gen)
# Start training, feed both noise and real images.
gan.fit(X_inputs={'input_gen_noise': gen_noise,
'input_disc_noise': disc_noise,
'input_disc_real': X},
Y_targets={'target_gen': y_gen,
'target_disc_fake': y_disc_fake,
'target_disc_real': y_disc_real},
n_epoch=10)
# Create another model from the generator graph to generate some samples
# for testing (re-using same session to re-use the weights learnt).
gen = tflearn.DNN(gen_net, session=gan.session)
f, a = plt.subplots(4, 10, figsize=(10, 4))
for i in range(10):
# Noise input.
z = np.random.uniform(-1., 1., size=[4, z_dim])
g = np.array(gen.predict({'input_gen_noise': z}))
for j in range(4):
# Generate image from noise. Extend to 3 channels for matplot figure.
img = np.reshape(np.repeat(g[j][:, :, np.newaxis], 3, axis=2),
newshape=(28, 28, 3))
a[j][i].imshow(img)
f.show()
plt.draw()
plt.waitforbuttonpress()
參考文獻: