1. 程式人生 > >turtlebot實現在多個目標點之間自主導航

turtlebot實現在多個目標點之間自主導航

turtlebot實現在幾個目標點之間自主導航的任務,關鍵是指定turtlebot的初始位姿後,設定多個目標點。

在~/catkin_ws/src/simple_navigation_gola/src目錄下建立nav_test.py檔案。

實現程式如下:

#!/usr/bin/env python
import rospy
import actionlib
from actionlib_msgs.msg import *
from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point, Quaternion, Twist
from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
from random import sample
from math import pow, sqrt

class NavTest():
    def __init__(self):
        rospy.init_node('nav_test', anonymous=True)
        rospy.on_shutdown(self.shutdown)

        # How long in seconds should the robot pause at each location?
        self.rest_time = rospy.get_param("~rest_time", 10)

        # Are we running in the fake simulator?
        self.fake_test = rospy.get_param("~fake_test", False)

        # Goal state return values
        goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED','SUCCEEDED',
                       'ABORTED', 'REJECTED','PREEMPTING', 'RECALLING', 
                       'RECALLED','LOST']

        # Set up the goal locations. Poses are defined in the map frame.
        # An easy way to find the pose coordinates is to point-and-click
        # Nav Goals in RViz when running in the simulator.
        # Pose coordinates are then displayed in the terminal
        # that was used to launch RViz.
        locations = dict()
      
        locations['hall_foyer'] = Pose(Point(1.714, 0.515, 0.000),
                                  Quaternion(0.000, 0.000, -0.309, 0.951))
        locations['hall_kitchen'] = Pose(Point(-0.809, -2.141, 0.000),
                                    Quaternion(0.000, 0.000, -0.816, 0.578))
        locations['hall_bedroom'] = Pose(Point(3.457, -1.495, 0.000),
                                    Quaternion(0.000, 0.000, -0.003, 1.000))

        #locations['hall_foyer'] = Pose(Point(1.719, 0.409, 0.000),
          #                        Quaternion(0.000, 0.000, 0.468, 0.884))
        #locations['hall_kitchen'] = Pose(Point(0.856, 2.858, 0.000),
         #                           Quaternion(0.000, 0.000, 0.192, 0.981))
        #locations['hall_bedroom'] = Pose(Point(1.781, 1.856, 0.000),
         #                           Quaternion(0.000, 0.000, 0.000, 1.000))
        #locations['living_room_1'] = Pose(Point(0.720, 2.229, 0.000),
                                     #Quaternion(0.000, 0.000, 0.786, 0.618))
        #locations['living_room_2'] = Pose(Point(1.471, 1.007, 0.000),
                                     #Quaternion(0.000, 0.000, 0.480, 0.877))
        #locations['dining_room_1'] = Pose(Point(-0.861, -0.019, 0.000),
                                     #Quaternion(0.000, 0.000, 0.892, -0.451))

        # Publisher to manually control the robot (e.g. to stop it)
        self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5)

        # Subscribe to the move_base action server
        self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)
        rospy.loginfo("Waiting for move_base action server...")

        # Wait 60 seconds for the action server to become available
        self.move_base.wait_for_server(rospy.Duration(60))
        rospy.loginfo("Connected to move base server")
        
        # A variable to hold the initial pose of the robot to be set by the user in RViz
        initial_pose = PoseWithCovarianceStamped()
        # Variables to keep track of success rate, running time, and distance traveled
        n_locations = len(locations)
        n_goals = 0
        n_successes = 0
        i = n_locations
        distance_traveled = 0
        start_time = rospy.Time.now()
        running_time = 0
        location = ""
        last_location = ""
        # Get the initial pose from the user
        rospy.loginfo("Click on the map in RViz to set the intial pose...")
        rospy.wait_for_message('initialpose', PoseWithCovarianceStamped)
        self.last_location = Pose()
        rospy.Subscriber('initialpose', PoseWithCovarianceStamped, self.update_initial_pose)
        # Make sure we have the initial pose
        while initial_pose.header.stamp == "":
            rospy.sleep(1)
        rospy.loginfo("Starting navigation test")

        # Begin the main loop and run through a sequence of locations
        while not rospy.is_shutdown():

        # If we've gone through the current sequence, start with a new random sequence
            if i == n_locations:
                i = 0
                sequence = sample(locations, n_locations)
            	# Skip over first location if it is the same as the last location
                if sequence[0] == last_location:
                    i = 1

            # Get the next location in the current sequence
            location = sequence[i]

            # Keep track of the distance traveled.
            # Use updated initial pose if available.
            if initial_pose.header.stamp == "":
                distance = sqrt(pow(locations[location].position.x
                           - locations[last_location].position.x, 2) +
                           pow(locations[location].position.y -
                           locations[last_location].position.y, 2))
            else:
                rospy.loginfo("Updating current pose.")
                distance = sqrt(pow(locations[location].position.x
                           - initial_pose.pose.pose.position.x, 2) +
                           pow(locations[location].position.y -
                           initial_pose.pose.pose.position.y, 2))
                initial_pose.header.stamp = ""

            # Store the last location for distance calculations
            last_location = location

            # Increment the counters
            i += 1
            n_goals += 1

            # Set up the next goal location
            self.goal = MoveBaseGoal()
            self.goal.target_pose.pose = locations[location]
            self.goal.target_pose.header.frame_id = 'map'
            self.goal.target_pose.header.stamp = rospy.Time.now()

            # Let the user know where the robot is going next
            rospy.loginfo("Going to: " + str(location))
            # Start the robot toward the next location
            self.move_base.send_goal(self.goal)

            # Allow 5 minutes to get there
            finished_within_time = self.move_base.wait_for_result(rospy.Duration(300))

            # Check for success or failure
            if not finished_within_time:
                self.move_base.cancel_goal()
                rospy.loginfo("Timed out achieving goal")
            else:
                state = self.move_base.get_state()
                if state == GoalStatus.SUCCEEDED:
                    rospy.loginfo("Goal succeeded!")
                    n_successes += 1
                    distance_traveled += distance
                else:
                    rospy.loginfo("Goal failed with error code: " + str(goal_states[state]))

            # How long have we been running?
            running_time = rospy.Time.now() - start_time
            running_time = running_time.secs / 60.0

            # Print a summary success/failure, distance traveled and time elapsed
            rospy.loginfo("Success so far: " + str(n_successes) + "/" +
                          str(n_goals) + " = " + str(100 * n_successes/n_goals) + "%")
            rospy.loginfo("Running time: " + str(trunc(running_time, 1)) +
                          " min Distance: " + str(trunc(distance_traveled, 1)) + " m")
            rospy.sleep(self.rest_time)

    def update_initial_pose(self, initial_pose):
        self.initial_pose = initial_pose

    def shutdown(self):
        rospy.loginfo("Stopping the robot...")
        self.move_base.cancel_goal()
        rospy.sleep(2)
        self.cmd_vel_pub.publish(Twist())
        rospy.sleep(1)
def trunc(f, n):

    # Truncates/pads a float f to n decimal places without rounding
    slen = len('%.*f' % (n, f))
    return float(str(f)[:slen])

if __name__ == '__main__':
    try:
        NavTest()
        rospy.spin()
    except rospy.ROSInterruptException:
        rospy.loginfo("AMCL navigation test finished.")

其中,在通過以下語句設定目標點位置和朝向:

        locations['hall_foyer'] = Pose(Point(1.714, 0.515, 0.000),
                                  Quaternion(0.000, 0.000, -0.309, 0.951))
        locations['hall_kitchen'] = Pose(Point(-0.809, -2.141, 0.000),
                                    Quaternion(0.000, 0.000, -0.816, 0.578))
        locations['hall_bedroom'] = Pose(Point(3.457, -1.495, 0.000),
                                    Quaternion(0.000, 0.000, -0.003, 1.000))

目標點位置和朝向引數通過在rviz中顯示地圖,並通過2d nav goal設定目標,並在開啟rviz的terminal中檢視在地圖的實際位姿。

設定完成後執行命令:

chmod +x nav_test.py

然後執行以下命令:
roslaunch turtlebot_bringup minimal.launch  //啟動turtlebot
roslaunh turtlebot_navigation amcl_demo.launch map_file:=/home/turtlebot/Downloads/map.yaml  //執行導航程式並載入已經建立好的地圖
roslaunch turtlebot_rviz_launchers view_navigation.launch      //在rviz中實時監測導航過程
rosrun simple_navigation_goal nav_test.py            //執行設定目標點的程式,並在rviz中通過2d pose estimate設定初始位姿。
下面就可以看到turtlebot在設定的目標點之間反覆自主導航。