1. 程式人生 > >XGBoost 模型儲存,讀取

XGBoost 模型儲存,讀取

一個數據集可以分為訓練集和驗證集,訓練完模型後,放到測試集上做預測。

#!/usr/bin/python
import numpy as np
import scipy.sparse
import pickle
import xgboost as xgb

### simple example
# load file from text file, also binary buffer generated by xgboost
dtrain = xgb.DMatrix('../data/agaricus.txt.train')
dtest = xgb.DMatrix('../data/agaricus.txt.test'
) #自己讀檔案(Xtrain是除label外的資料) #dmatrix_train=xgb.DMatrix(Xtrain,label=ytrain,feature_names=Xtrain.columns.values) #dmatrix_test=xgb.DMatrix(Xtest,label=ytest) # specify parameters via map, definition are same as c++ version param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic'} # specify validations set to watch performance(檢視訓練集上和驗證集上的分數,train上會一直下降,驗證集上不一定)
watchlist = [(dtest, 'eval'), (dtrain, 'train')] #指定檢視驗證集的分數,配合使用早停法 #watchlist = [(dmatrix_test, 'eval')] num_round = 2000 bst = xgb.train(param, dtrain, num_round, watchlist) #bst=xgb.train(params,dmatrix_train,num_rounds,watchlist,early_stopping_rounds=20) # this is prediction(驗證集上真實值和預測值做比較) preds = bst.predict(dtest) labels = dtest.get_label() print('error=%f'
% (sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds)))) #模型儲存 bst.save_model('0001.model') # dump model bst.dump_model('dump.raw.txt') # dump model with feature map bst.dump_model('dump.nice.txt', '../data/featmap.txt') # save dmatrix into binary buffer(資料集儲存) dtest.save_binary('dtest.buffer') #看這裡 # save model bst.save_model('xgb.model') # load model and data in bst2 = xgb.Booster(model_file='xgb.model') dtest2 = xgb.DMatrix('dtest.buffer') preds2 = bst2.predict(dtest2) # assert they are the same assert np.sum(np.abs(preds2 - preds)) == 0 # alternatively, you can pickle the booster pks = pickle.dumps(bst2) # load model and data in bst3 = pickle.loads(pks) preds3 = bst3.predict(dtest2) # assert they are the same assert np.sum(np.abs(preds3 - preds)) == 0 ###下面不用看 # build dmatrix from scipy.sparse print('start running example of build DMatrix from scipy.sparse CSR Matrix') labels = [] row = []; col = []; dat = [] i = 0 for l in open('../data/agaricus.txt.train'): arr = l.split() labels.append(int(arr[0])) for it in arr[1:]: k,v = it.split(':') row.append(i); col.append(int(k)); dat.append(float(v)) i += 1 csr = scipy.sparse.csr_matrix((dat, (row, col))) dtrain = xgb.DMatrix(csr, label=labels) watchlist = [(dtest, 'eval'), (dtrain, 'train')] bst = xgb.train(param, dtrain, num_round, watchlist) print('start running example of build DMatrix from scipy.sparse CSC Matrix') # we can also construct from csc matrix csc = scipy.sparse.csc_matrix((dat, (row, col))) dtrain = xgb.DMatrix(csc, label=labels) watchlist = [(dtest, 'eval'), (dtrain, 'train')] bst = xgb.train(param, dtrain, num_round, watchlist) print('start running example of build DMatrix from numpy array') # NOTE: npymat is numpy array, we will convert it into scipy.sparse.csr_matrix in internal implementation # then convert to DMatrix npymat = csr.todense() dtrain = xgb.DMatrix(npymat, label=labels) watchlist = [(dtest, 'eval'), (dtrain, 'train')] bst = xgb.train(param, dtrain, num_round, watchlist)