1. 程式人生 > >android qemu-kvm i8254 pit虛擬裝置

android qemu-kvm i8254 pit虛擬裝置

ubuntu12.04下使用android emulator,啟用kvm加速,模擬i8254定時器的程式碼比較舊,對應於qemu0.14或者之前的版本,這時還沒有QOM(qemu object model)模型,虛擬裝置的程式碼是比較簡單的。

8259主片的IRQ0~7對應INT 8~INT F,從片的IRQ8~IRQ15對應INT 70~INT 77。

有份以前上C語言測控時寫的程式碼,使用了8254的,輸入取樣週期(in ms)和取樣次數,每次取樣時列印一個'8'。

注意定時器的最大週期比較短,大約55ms,所以需要使用軟體方式擴大定時器的週期,注意週期不是10ms的倍數時的特殊處理。

定時器0工作於模式3,方波發生器。用學硬體的話來說,就是自動重灌定時器;用學軟體的話來說,就是週期定時器,不是oneshot的。

/* C語言測控程式設計
 * 2012年3月29日
 * 系統XP sp3,編譯器:TC3.0,編輯器:VIM7.3
 * */

#include <stdio.h>
#include <dos.h>
#include <graphics.h>
#include <math.h>
#include <string.h>

/*引數*/
float   gfT;                                    //取樣週期
long    glN;                                    //取樣次數
int     giFlag;                                 //標記時間到
long    glUserCnt;                              //已取樣次數
int     giTimerN;                               //取樣週期除以10ms
int     giTimerSmallValue;                      //取樣週期模10ms後,對應的定時器初值
int     giTimerCnt;                             //定時器中斷次數

void    LoadConfig(void);                       //讀取配置檔案
void    interrupt (*OldIsr08)(void);            //原先的中斷函式指標
void    interrupt MyIsr08(void);                //自定義的中斷函式
void    TimerInit(void);                        //定時器初始化函式
void    TimerExit(void);                        //定時器恢復函式
void    UserTimerIsr(void);                     //每個取樣週期都會呼叫的函式

int     main()
{
    /*讀取配置*/
    LoadConfig();

    /*初始化*/
    TimerInit();

    while((glUserCnt < glN) || (glN == 0))
    {
        if(kbhit())     //特定按鍵退出
        {
            if(getch() == ' ')
                break;
        }
        if(giFlag)
        {
            giFlag = 0;
            putchar('8');
        }
    }

    /*恢復定時器和dos介面*/
    TimerExit();
    printf("\nthe times of interrupt is: %ld\n",glUserCnt);
    getch();
    return 0;
}

/*定時器中斷函式,每到使用者設定的時間,呼叫一次UserTimerIsr()*/
void    interrupt MyIsr08(void)
{
    giTimerCnt++;
    if(giTimerN == 0)   //取樣週期小於10ms的情況
    {
        giTimerCnt = 0;
        UserTimerIsr();
        outportb(0x20, 0x20); //清除中斷標誌位,可以看8259相關的資料
        return;
    }
    if((giTimerSmallValue == 0) && (giTimerCnt == giTimerN))    //取樣週期是10ms的倍數的情況
    {
        giTimerCnt = 0;
        UserTimerIsr();
        outportb(0x20, 0x20);
        return;
    }
    if((giTimerSmallValue != 0) && (giTimerN != 0)) //取樣週期大於10ms,且不是10ms倍數的情況
    {
        if(giTimerCnt == 1)
        {
            disable();
            outportb(0x43, 0x36);
            outportb(0x40, 0x9d);
            outportb(0x40, 0x2e);
            enable();
        }
        if(giTimerCnt == (giTimerN + 1))
        {
            giTimerCnt = 0;
            disable();
            outportb(0x43, 0x36);
            outportb(0x40, giTimerSmallValue & 0xff);
            outportb(0x40, (giTimerSmallValue >> 8) & 0xff);
            enable();
            UserTimerIsr();
        }
        outportb(0x20, 0x20);
        return;
    }
    outportb(0x20, 0x20);
}

/*初始化定時器*/
void    TimerInit(void)
{
    giTimerN = (int)(gfT / 10);
    giTimerSmallValue = (int)((gfT - giTimerN * 10) * 1193); // 輸入時鐘頻率1193kHZ
    disable();
    OldIsr08 = getvect(0x08);
    if(giTimerSmallValue)
    {
        outportb(0x43, 0x36);
        outportb(0x40, giTimerSmallValue & 0xff);
        outportb(0x40, (giTimerSmallValue >> 8) & 0xff);
    }
    else
    {
        outportb(0x43, 0x36);
        outportb(0x40, 0x9d);
        outportb(0x40, 0x2e);
    }
    setvect(0x08, MyIsr08);
    enable();
}

/*恢復定時器原先的服務函式和週期*/
void    TimerExit(void)
{
    disable();
    outportb(0x43, 0x36);
    outportb(0x40, 0x00);
    outportb(0x40, 0x00);
    setvect(0x08, OldIsr08);
    enable();
}

/*每個取樣週期都會呼叫的函式*/
void    UserTimerIsr(void)
{
    glUserCnt++;
    giFlag = 1;
}

/*獲取配置資訊*/
void    LoadConfig(void)
{
    printf("input T and N\n");
    scanf("%f %ld", &gfT, &glN);
    while(getchar() != 10);
    if( gfT <= 0 || glN < 0)
    {
        printf("error, try again\n");
        LoadConfig();
    }
}

真的看完了,現在開始看模擬的。

8254的初始化是在pc_init1中執行的,設定iobase為0x40,IRQ為0,INT 8:

pit = pit_init(0x40, i8259[0]);

8254是有三個timer的,只用到了channel 0的timer。

qemu有自己的定時器,輸入時鐘是1G,對應1ns。8254的輸入時鐘是1193kHZ,如何模擬的呢?

根據8254的設定,計算出來下一個中斷到臨的tick次數,在根據8254和qemu timer頻率的不同,對tick進行轉換,然後設定qemu timer的定時設定,當qemu timer超時時,callback函式就是8254的中斷處理函式pit_irq_timer。在中斷函式中,再進行一些其它的處理,如重新裝載之類的。

PITState *pit_init(int base, qemu_irq irq)
{
    PITState *pit = &pit_state;
    PITChannelState *s;

    s = &pit->channels[0];
    /* the timer 0 is connected to an IRQ */
    s->irq_timer = timer_new(QEMU_CLOCK_VIRTUAL, SCALE_NS, pit_irq_timer, s);
    s->irq = irq;

    register_savevm(NULL, "i8254", base, 1, pit_save, pit_load, pit);

    qemu_register_reset(pit_reset, 0, pit);
    register_ioport_write(base, 4, 1, pit_ioport_write, pit);
    register_ioport_read(base, 3, 1, pit_ioport_read, pit);

    pit_reset(pit);

    return pit;
}

qemu_register_reset是用連結串列儲存一些復位函式的:
void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
{
    QEMUResetEntry **pre, *re;

    pre = &first_reset_entry;
    while (*pre != NULL && (*pre)->order >= order) {
        pre = &(*pre)->next;
    }
    re = g_malloc0(sizeof(QEMUResetEntry));
    re->func = func;
    re->opaque = opaque;
    re->order = order;
    re->next = NULL;
    *pre = re;
}


當然pit_init最後也呼叫了pit_reset函式對暫存器進行復位,將mode設定為3,設定gate,計數值歸零:

static void pit_reset(void *opaque)
{
    PITState *pit = opaque;
    PITChannelState *s;
    int i;

    for(i = 0;i < 3; i++) {
        s = &pit->channels[i];
        s->mode = 3;
        s->gate = (i != 2);
        pit_load_count(s, 0);
    }
}

這兩行設定了暫存器的讀寫函式,注意這裡是PMIO方式,不是MMIO方式的暫存器。0x40~0x43的寫函式設定為pit_ioport_write;0x40~0x42的讀函式設定為pit_ioport_read:
register_ioport_write(base, 4, 1, pit_ioport_write, pit);
register_ioport_read(base, 3, 1, pit_ioport_read, pit);


寫函式,看懂暫存器的使用後,這個函式還是比較簡單的:
static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
    PITState *pit = opaque;
    int channel, access;
    PITChannelState *s;

    addr &= 3;
    if (addr == 3) {
        channel = val >> 6;
        if (channel == 3) {
            /* read back command */
            for(channel = 0; channel < 3; channel++) {
                s = &pit->channels[channel];
                if (val & (2 << channel)) {
                    if (!(val & 0x20)) {
                        pit_latch_count(s);
                    }
                    if (!(val & 0x10) && !s->status_latched) {
                        /* status latch */
                        /* XXX: add BCD and null count */
                        s->status =  (pit_get_out1(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) 7) |
                            (s->rw_mode << 4) |
                            (s->mode << 1) |
                            s->bcd;
                        s->status_latched = 1;
                    }
                }
            }
        } else {
            s = &pit->channels[channel];
            access = (val >> 4) & 3;
            if (access == 0) {
                pit_latch_count(s);
            } else {
                s->rw_mode = access;
                s->read_state = access;
                s->write_state = access;

                s->mode = (val >> 1) & 7;
                s->bcd = val & 1;
                /* XXX: update irq timer ? */
            }
        }
    } else {
        s = &pit->channels[addr];
        switch(s->write_state) {
        default:
        case RW_STATE_LSB:
            pit_load_count(s, val);
            break;
        case RW_STATE_MSB:
            pit_load_count(s, val << 8);
            break;
        case RW_STATE_WORD0:
            s->write_latch = val;
            s->write_state = RW_STATE_WORD1;
            break;
        case RW_STATE_WORD1:
            pit_load_count(s, s->write_latch | (val << 8));
            s->write_state = RW_STATE_WORD0;
            break;
        }
    }
}


pit_latch_count用於鎖存當前的計數值:

static void pit_latch_count(PITChannelState *s)
{
    if (!s->count_latched) {
        s->latched_count = pit_get_count(s);
        s->count_latched = s->rw_mode;
    }
}


pit_load_count用於裝載計數值,count_load_time是裝載時tick的值(tick++ in every ns);count是8254的週期,8254自己的計數值會按照1193kHZ的頻率遞減的。注意和count_load_time單位的不同,以及後續單位的轉換。最後呼叫pit_irq_timer_update,對qemu timer進行更新。

static inline void pit_load_count(PITChannelState *s, int val)
{
    if (val == 0)
        val = 0x10000;
    s->count_load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    s->count = val;
    pit_irq_timer_update(s, s->count_load_time);
}


pit_irq_timer_update函式幹兩件事:

1、計算irq_level,就是比較tick的值和設定的值,滿足條件時就會qemu_set_irq觸發中斷請求

2、計算expire_time,並且呼叫timer_mod更新qemu timer,讓qemu timer在8254下一個需要產生中斷的時候產生timeout,並呼叫callback,也就是8254的中斷函式

static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
{
    int64_t expire_time;
    int irq_level;

    if (!s->irq_timer)
        return;
    expire_time = pit_get_next_transition_time(s, current_time);
    irq_level = pit_get_out1(s, current_time);
    qemu_set_irq(s->irq, irq_level);
#ifdef DEBUG_PIT
    printf("irq_level=%d next_delay=%f\n",
           irq_level,
           (double)(expire_time - current_time) / get_ticks_per_sec());
#endif
    s->next_transition_time = expire_time;
    if (expire_time != -1)
        timer_mod(s->irq_timer, expire_time);
    else
        timer_del(s->irq_timer);
}


8254的中斷函式,也就是qemu timer的callback函式,也呼叫了pit_irq_timer_update:

static void pit_irq_timer(void *opaque)
{
    PITChannelState *s = opaque;

    pit_irq_timer_update(s, s->next_transition_time);
}
暫存器的讀函式:
static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
{
    PITState *pit = opaque;
    int ret, count;
    PITChannelState *s;

    addr &= 3;
    s = &pit->channels[addr];
    if (s->status_latched) {
        s->status_latched = 0;
        ret = s->status;
    } else if (s->count_latched) {
        switch(s->count_latched) {
        default:
        case RW_STATE_LSB:
            ret = s->latched_count & 0xff;
            s->count_latched = 0;
            break;
        case RW_STATE_MSB:
            ret = s->latched_count >> 8;
            s->count_latched = 0;
            break;
        case RW_STATE_WORD0:
            ret = s->latched_count & 0xff;
            s->count_latched = RW_STATE_MSB;
            break;
        }
    } else {
        switch(s->read_state) {
        default:
        case RW_STATE_LSB:
            count = pit_get_count(s);
            ret = count & 0xff;
            break;
        case RW_STATE_MSB:
            count = pit_get_count(s);
            ret = (count >> 8) & 0xff;
            break;
        case RW_STATE_WORD0:
            count = pit_get_count(s);
            ret = count & 0xff;
            s->read_state = RW_STATE_WORD1;
            break;
        case RW_STATE_WORD1:
            count = pit_get_count(s);
            ret = (count >> 8) & 0xff;
            s->read_state = RW_STATE_WORD0;
            break;
        }
    }
    return ret;
}


當kvm執行到PMIO的操作時,會退出,然後呼叫kvm_handle_io:
        case KVM_EXIT_IO:
            dprintf("handle_io\n");
            ret = kvm_handle_io(cpu, run->io.port,
                                (uint8_t *)run + run->io.data_offset,
                                run->io.direction,
                                run->io.size,
                                run->io.count);
            break;

static int kvm_handle_io(CPUState *cpu, uint16_t port, void *data,
                         int direction, int size, uint32_t count)
{
    int i;
    uint8_t *ptr = data;

    for (i = 0; i < count; i++) {
        if (direction == KVM_EXIT_IO_IN) {
            switch (size) {
            case 1:
                stb_p(ptr, cpu_inb(port));
                break;
            case 2:
                stw_p(ptr, cpu_inw(port));
                break;
            case 4:
                stl_p(ptr, cpu_inl(port));
                break;
            }
        } else {
            switch (size) {
            case 1:
                cpu_outb(port, ldub_p(ptr));
                break;
            case 2:
                cpu_outw(port, lduw_p(ptr));
                break;
            case 4:
                cpu_outl(port, ldl_p(ptr));
                break;
            }
        }

        ptr += size;
    }

    return 1;
}

以8bit讀為例子:
uint8_t cpu_inb(pio_addr_t addr)
{
    uint8_t val;
    val = ioport_read(0, addr);
    LOG_IOPORT("inb : %04"FMT_pioaddr" %02"PRIx8"\n", addr, val);
    return val;
}

static uint32_t ioport_read(int index, uint32_t address)
{
    static IOPortReadFunc * const default_func[3] = {
        default_ioport_readb,
        default_ioport_readw,
        default_ioport_readl
    };
    IOPortReadFunc *func = ioport_read_table[index][address];
    if (!func)
        func = default_func[index];
    return func(ioport_opaque[address], address);
}
PMIO的地址和opaque以及讀寫函式的繫結,使用register_ioport_read,register_ioport_write函式,在i8254.c的pit_init中呼叫的:
int register_ioport_read(pio_addr_t start, int length, int size,
                         IOPortReadFunc *func, void *opaque)
{
    pio_addr_t i;
    int bsize;

    if (ioport_bsize(size, &bsize)) {
        hw_error("register_ioport_read: invalid size");
        return -1;
    }
    for(i = start; i < start + length; i += size) {
        ioport_read_table[bsize][i] = func;
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
            hw_error("register_ioport_read: invalid opaque");
        ioport_opaque[i] = opaque;
    }
    return 0;
}

pit_save,pit_load,register_savevm用於快照和恢復的,可以不看。

現在qemu的8254都是使用了QOM模型了,這個模型太TMD的複雜了。另外hw/i386/kvm/timer/i8254.c中提供了kvm-pit,使用kvm提供的核心態的8254的模擬,中斷的處理和IO的讀寫都在核心態,不需要退出kvm了,速度要更快些。類似的,8259之類的也有kvm核心態的實現,所以說android emulator的效能還是有提升空間的。