LintCode堆疊題總結
這篇是基於我之前的一篇文章的:LintCode資料結構題 那篇文章介紹了基本的堆疊實現以及一些基本的應用。現在來看一下更多的題目和應用來擴充套件一下對堆疊的實踐。
要求對錶達式進行展開。比如 s = 3[2[ad]3[pf]]xyz, return adadpfpfpfadadpfpfpfadadpfpfpfxyz。這道題可以用一個棧Stack來解決。然後通過分支判斷來處理不同的情況。需要注意的是數字可以是兩位數三位數等等,所以要對數字進行整合。
從左往右掃描字串,基本的邏輯如下:
1)如遇到數字,則把字元轉換為數字
2)如遇到左括號,則把數字入棧
3)如遇到右括號,則把棧內的字串拿出來做一個轉換,再放回到棧中
4)如遇到普通的字元,則入棧
舉個例子,假如字串是2[2[a]2[p]]x,則轉換過程如下圖所示:
public class Solution { /** * @param s an expression includes numbers, letters and brackets * @return a string */ public String expressionExpand(String s) { Stack<String> stack = new Stack<String>(); int number = 0; for (int i = 0; i < s.length(); i++) { char c = s.charAt(i); if (Character.isDigit(c)) { number = number * 10 + (c - '0'); } else if (c == '[') { stack.push(number + ""); number = 0; } else if (c == ']') { String toAdd = popStack(stack); int count = Integer.parseInt(stack.pop()); for (int j = 0; j < count; j++) { stack.push(toAdd); } } else { stack.push(c + ""); } } return popStack(stack); } public String popStack(Stack<String> stack) { Stack<String> buffer = new Stack<String>(); while (!stack.isEmpty() && !Character.isDigit(stack.peek().charAt(0))) { buffer.push(stack.pop()); } StringBuilder sb = new StringBuilder(); while (!buffer.isEmpty()) { sb.append(buffer.pop()); } return sb.toString(); } }
367. Expression Tree Build
我們需要用2個棧來解決,一個棧data用於存數字,一個棧op用於存操作符。從左往右掃描中綴表示式字串:
1)若遇到數字,則new一個節點,存到data棧裡面
2)若遇到左括號(,則new一個節點,存到op棧裡面
3)若遇到+-,若op棧有運算子的話(不是左括號)話,那就迴圈的把op棧頂運算子拿出來,把data棧的2個數字拿出來,湊成一個樹,然後壓回data棧。迴圈完後,再把遇到的+-壓入op棧。
4)若遇到*/,若op棧有運算子的話(不是*/)話,那就迴圈的把op棧頂運算子拿出來,把data棧的2個數字拿出來,湊成一個樹,然後壓回data棧。迴圈完後,再把遇到的*/壓入op棧。
5)若遇到右括號,若op棧頂的運算子不是左括號的話,那就迴圈的把op棧頂運算子拿出來,把data棧的2個數字拿出來,湊成一個樹,然後壓回data棧。直到遇到左括號,然後把左括號pop出來。
有個小技巧就是可以在紙上畫2個棧來模擬一下整個流程,這樣就會清晰很多。不必死記硬背,隨便拿出一個例子,然後onsite的時候拿出白板畫一下模擬一下流程。思路整理順暢後,程式碼自然就水到渠成了。
/**
* Definition of ExpressionTreeNode:
* public class ExpressionTreeNode {
* public String symbol;
* public ExpressionTreeNode left, right;
* public ExpressionTreeNode(String symbol) {
* this.symbol = symbol;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
* @param expression: A string array
* @return: The root of expression tree
*/
public ExpressionTreeNode build(String[] expression) {
Stack<ExpressionTreeNode> data = new Stack<ExpressionTreeNode>();
Stack<ExpressionTreeNode> op = new Stack<ExpressionTreeNode>();
for (String s : expression) {
if (Character.isDigit(s.charAt(0))) {
data.push(new ExpressionTreeNode(s));
} else if (s.equals("(")) {
op.push(new ExpressionTreeNode(s));
// +-優先順序很低,需要給其他操作符讓路
} else if (s.equals("+") || s.equals("-")) {
while (!op.isEmpty() && !op.peek().symbol.equals("(")) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
op.push(new ExpressionTreeNode(s));
// */只需要給同級別的讓路
} else if (s.equals("*") || s.equals("/")) {
while (!op.isEmpty() && (op.peek().symbol.equals("*") || op.peek().symbol.equals("/"))) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
op.push(new ExpressionTreeNode(s));
} else if (s.equals(")")) {
while (!op.peek().symbol.equals("(")) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
op.pop();
}
}
// 操作符棧還有內容
while (!op.isEmpty()) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
if (data.isEmpty()) {
return null;
}
return data.pop();
}
}
對錶達式進行求值,幾乎跟上題的程式碼一模一樣,思路也是類似的。不再贅述了。反正也是用2個棧來解決,畫畫圖就能理解了:
public class Solution {
/**
* @param expression: an array of strings;
* @return: an integer
*/
public int calc(String op, String a, String b) {
int x = Integer.parseInt(a);
int y = Integer.parseInt(b);
if (op.equals("*")) {
return x * y;
} else if (op.equals("/")) {
return x / y;
} else if (op.equals("+")) {
return x + y;
} else if (op.equals("-")) {
return x - y;
}
return 0;
}
public int evaluateExpression(String[] expression) {
Stack<String> data = new Stack<String>();
Stack<String> op = new Stack<String>();
for (String s: expression) {
if (Character.isDigit(s.charAt(0))) {
data.push(s);
} else if (s.equals("(")) {
op.push(s);
} else if (s.equals("+") || s.equals("-")) {
while (!op.isEmpty() && !op.peek().equals("(")) {
String operator = op.pop();
String b = data.pop();
String a = data.pop();
String res = calc(operator, a, b) + "";
data.push(res);
}
op.push(s);
} else if (s.equals("*") || s.equals("/")) {
while (!op.isEmpty() && (op.peek().equals("*") || op.peek().equals("/"))) {
String operator = op.pop();
String b = data.pop();
String a = data.pop();
String res = calc(operator, a, b) + "";
data.push(res);
}
op.push(s);
} else if (s.equals(")")) {
while (!op.isEmpty() && !op.peek().equals("(")) {
String operator = op.pop();
String b = data.pop();
String a = data.pop();
String res = calc(operator, a, b) + "";
data.push(res);
}
op.pop();
}
}
while (!op.isEmpty()) {
String operator = op.pop();
String b = data.pop();
String a = data.pop();
String res = calc(operator, a, b) + "";
data.push(res);
}
if (data.isEmpty()) {
return 0;
}
return Integer.parseInt(data.pop());
}
};
把一個表示式轉換為波蘭表示式,其實思路很簡單,就是先把他建立成一棵表示式樹,建樹可以用上面拿到build expression tree的程式碼,然後再利用先序遍歷整棵樹就能得到答案了:
class ExpressionTreeNode {
public String symbol;
public ExpressionTreeNode left, right;
public ExpressionTreeNode(String symbol) {
this.symbol = symbol;
this.left = this.right = null;
}
}
public class Solution {
/**
* @param expression: A string array
* @return: The Polish notation of this expression
*/
public ExpressionTreeNode build(String[] expression) {
Stack<ExpressionTreeNode> data = new Stack<ExpressionTreeNode>();
Stack<ExpressionTreeNode> op = new Stack<ExpressionTreeNode>();
for (String s : expression) {
if (Character.isDigit(s.charAt(0))) {
data.push(new ExpressionTreeNode(s));
} else if (s.equals("(")) {
op.push(new ExpressionTreeNode(s));
// +-優先順序很低,需要給其他操作符讓路
} else if (s.equals("+") || s.equals("-")) {
while (!op.isEmpty() && !op.peek().symbol.equals("(")) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
op.push(new ExpressionTreeNode(s));
// */只需要給同級別的讓路
} else if (s.equals("*") || s.equals("/")) {
while (!op.isEmpty() && (op.peek().symbol.equals("*") || op.peek().symbol.equals("/"))) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
op.push(new ExpressionTreeNode(s));
} else if (s.equals(")")) {
while (!op.peek().symbol.equals("(")) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
op.pop();
}
}
// 操作符棧還有內容
while (!op.isEmpty()) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
if (data.isEmpty()) {
return null;
}
return data.pop();
}
public void preTraversal(ArrayList<String> res, ExpressionTreeNode root) {
if (root != null) {
res.add(root.symbol);
preTraversal(res, root.left);
preTraversal(res, root.right);
}
}
public ArrayList<String> convertToPN(String[] expression) {
ExpressionTreeNode root = build(expression);
ArrayList<String> res = new ArrayList<String>();
preTraversal(res, root);
return res;
}
}
把一個表示式轉換為逆波蘭表示式,其實思路很簡單,就是先把他建立成一棵表示式樹,建樹可以用上面拿到build expression tree的程式碼,然後再利用後序遍歷整棵樹就能得到答案了:
class ExpressionTreeNode {
public String symbol;
public ExpressionTreeNode left, right;
public ExpressionTreeNode(String symbol) {
this.symbol = symbol;
this.left = this.right = null;
}
}
public class Solution {
/**
* @param expression: A string array
* @return: The Reverse Polish notation of this expression
*/
public ExpressionTreeNode build(String[] expression) {
Stack<ExpressionTreeNode> data = new Stack<ExpressionTreeNode>();
Stack<ExpressionTreeNode> op = new Stack<ExpressionTreeNode>();
for (String s : expression) {
if (Character.isDigit(s.charAt(0))) {
data.push(new ExpressionTreeNode(s));
} else if (s.equals("(")) {
op.push(new ExpressionTreeNode(s));
// +-優先順序很低,需要給其他操作符讓路
} else if (s.equals("+") || s.equals("-")) {
while (!op.isEmpty() && !op.peek().symbol.equals("(")) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
op.push(new ExpressionTreeNode(s));
// */只需要給同級別的讓路
} else if (s.equals("*") || s.equals("/")) {
while (!op.isEmpty() && (op.peek().symbol.equals("*") || op.peek().symbol.equals("/"))) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
op.push(new ExpressionTreeNode(s));
} else if (s.equals(")")) {
while (!op.peek().symbol.equals("(")) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
op.pop();
}
}
// 操作符棧還有內容
while (!op.isEmpty()) {
ExpressionTreeNode node = op.pop();
ExpressionTreeNode a = data.pop();
ExpressionTreeNode b = data.pop();
node.right = a;
node.left = b;
data.push(node);
}
if (data.isEmpty()) {
return null;
}
return data.pop();
}
public void postTraversal(ArrayList<String> res, ExpressionTreeNode root) {
if (root != null) {
postTraversal(res, root.left);
postTraversal(res, root.right);
res.add(root.symbol);
}
}
public ArrayList<String> convertToRPN(String[] expression) {
ExpressionTreeNode root = build(expression);
ArrayList<String> res = new ArrayList<String>();
postTraversal(res, root);
return res;
}
}