1. 程式人生 > >softmax迴歸及其實現(TensorFlow)

softmax迴歸及其實現(TensorFlow)

在之前的博文《logistic迴歸》中,我們簡單的提到了softmax迴歸。本文將首先介紹softmax迴歸的基本原理。然後比較softmax迴歸於logistic迴歸的關聯。最後用開源TensorFlow編寫演算法並應用於手寫數字(MNIST)的識別。

softmax原理

softmax與logistic

用TensorFlow實現softmax regression識別手寫數字

#!/usr/bin/env python
# @Time    : 3/28/17 11:14 PM
# @Author  : SunXiangguo
# @version : Anaconda3.6+Ubuntu_16.04_STL_64
# @File : 22.py # @Software: PyCharm """A very simple MNIST classifier. """ from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets("MNIST_data", one_hot=True) print(mnist.train.images.shape,mnist.train.labels.shape) sess = tf.InteractiveSession() # step1:define the algorithm for forward calculate
x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W)+b) # step2: define loss function y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1
])) # step3: train model iterally train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) tf.global_variables_initializer().run() for i in range(1000): batch_xs , batch_ys = mnist.train.next_batch(100) train_step.run({x:batch_xs,y_:batch_ys}) # step4:test model in test_data correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(accuracy.eval({x:mnist.test.images, y_:mnist.test.labels}))

實驗結果為:92%