OpenCV人臉檢測使用detectMultiScale可能會報錯_CrtIsValidHeapPointer的解決方法
阿新 • • 發佈:2019-02-04
執行環境:VS2012+OpenCV2.4.8。
存在問題:
在使用OpenCV的人臉檢測時,用到了detectMultiScale函式,使用方法為:face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, cv::Size(30, 30) );
其中faces為vector,在faces這個vector釋放時,會出現_CrtIsValidHeapPointer的bug。這應該是由於detectMultiScale函式封裝在OpenCV的dll中,在檢測到人臉後會對faces這個vector進行操作,而在該變數使用結束釋放時,再次對其進行操作時,就會報錯。
程式碼如下:
#include "stdafx.h"
#include <opencv2/opencv.hpp>
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
// Global variables
// Copy this file from opencv/data/haarscascades to target folder
string face_cascade_name = "F:\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml";
CascadeClassifier *face_cascade;
string window_name = "Capture - Face detection";
int filenumber; // Number of file to be saved
string filename;
// Function Headers
class faceDetection
{
private :
std::vector<Rect> faces;
public:
faceDetection();
~faceDetection();
void detectAndDisplay(Mat frame);
};
faceDetection::faceDetection()
{
}
faceDetection::~faceDetection()
{
}
// Function detectAndDisplay
void faceDetection::detectAndDisplay(Mat frame)
{
// 報錯問題所在,。
// std::vector<Rect> faces;
Mat frame_gray;
Mat crop;
Mat res;
Mat gray;
string text;
stringstream sstm;
cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
equalizeHist(frame_gray, frame_gray);
// Detect faces
face_cascade->detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
// Set Region of Interest
cv::Rect roi_b;
cv::Rect roi_c;
size_t ic = 0; // ic is index of current element
int ac = 0; // ac is area of current element
size_t ib = 0; // ib is index of biggest element
int ab = 0; // ab is area of biggest element
for (ic = 0; ic < faces.size(); ic++) // Iterate through all current elements (detected faces)
{
roi_c.x = faces[ic].x;
roi_c.y = faces[ic].y;
roi_c.width = (faces[ic].width);
roi_c.height = (faces[ic].height);
ac = roi_c.width * roi_c.height; // Get the area of current element (detected face)
roi_b.x = faces[ib].x;
roi_b.y = faces[ib].y;
roi_b.width = (faces[ib].width);
roi_b.height = (faces[ib].height);
ab = roi_b.width * roi_b.height; // Get the area of biggest element, at beginning it is same as "current" element
if (ac > ab)
{
ib = ic;
roi_b.x = faces[ib].x;
roi_b.y = faces[ib].y;
roi_b.width = (faces[ib].width);
roi_b.height = (faces[ib].height);
}
crop = frame(roi_b);
resize(crop, res, Size(128, 128), 0, 0, INTER_LINEAR); // This will be needed later while saving images
cvtColor(crop, gray, CV_BGR2GRAY); // Convert cropped image to Grayscale
// Form a filename
filename = "";
stringstream ssfn;
ssfn << filenumber << ".png";
filename = ssfn.str();
filenumber++;
imwrite(filename, gray);
Point pt1(faces[ic].x, faces[ic].y); // Display detected faces on main window - live stream from camera
Point pt2((faces[ic].x + faces[ic].height), (faces[ic].y + faces[ic].width));
rectangle(frame, pt1, pt2, Scalar(0, 255, 0), 2, 8, 0);
}
// Show image
sstm << "Crop area size: " << roi_b.width << "x" << roi_b.height << " Filename: " << filename;
text = sstm.str();
putText(frame, text, cvPoint(30, 30), FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0, 0, 255), 1, CV_AA);
imshow("original", frame);
// waitKey();
if (!crop.empty())
{
imshow("detected", crop);
// waitKey();
}
else
destroyWindow("detected");
}
// Function main
int main()
{
faceDetection *face;
face = new faceDetection;
// Load the cascade
face_cascade = new CascadeClassifier;
if (!face_cascade->load(face_cascade_name)){
printf("--(!)Error loading\n");
return (-1);
}
// Read the image file
Mat frame = imread("lp.jpg");
// Apply the classifier to the frame
if (!frame.empty()){
face->detectAndDisplay(frame);
}
else{
printf(" --(!) No captured frame -- Break!");
//break;
}
int c = waitKey(1000);
if (27 == char(c)){
// break;
}
return 0;
}