1. 程式人生 > >OpenCV人臉檢測使用detectMultiScale可能會報錯_CrtIsValidHeapPointer的解決方法

OpenCV人臉檢測使用detectMultiScale可能會報錯_CrtIsValidHeapPointer的解決方法

執行環境:VS2012+OpenCV2.4.8。

存在問題:
在使用OpenCV的人臉檢測時,用到了detectMultiScale函式,使用方法為:face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, cv::Size(30, 30) );
其中faces為vector,在faces這個vector釋放時,會出現_CrtIsValidHeapPointer的bug。這應該是由於detectMultiScale函式封裝在OpenCV的dll中,在檢測到人臉後會對faces這個vector進行操作,而在該變數使用結束釋放時,再次對其進行操作時,就會報錯。

程式碼如下:

#include "stdafx.h"
#include <opencv2/opencv.hpp>
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

// Global variables
// Copy this file from opencv/data/haarscascades to target folder
string face_cascade_name = "F:\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml"; CascadeClassifier *face_cascade; string window_name = "Capture - Face detection"; int filenumber; // Number of file to be saved string filename; // Function Headers class faceDetection { private
: std::vector<Rect> faces; public: faceDetection(); ~faceDetection(); void detectAndDisplay(Mat frame); }; faceDetection::faceDetection() { } faceDetection::~faceDetection() { } // Function detectAndDisplay void faceDetection::detectAndDisplay(Mat frame) { // 報錯問題所在,。 // std::vector<Rect> faces; Mat frame_gray; Mat crop; Mat res; Mat gray; string text; stringstream sstm; cvtColor(frame, frame_gray, COLOR_BGR2GRAY); equalizeHist(frame_gray, frame_gray); // Detect faces face_cascade->detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30)); // Set Region of Interest cv::Rect roi_b; cv::Rect roi_c; size_t ic = 0; // ic is index of current element int ac = 0; // ac is area of current element size_t ib = 0; // ib is index of biggest element int ab = 0; // ab is area of biggest element for (ic = 0; ic < faces.size(); ic++) // Iterate through all current elements (detected faces) { roi_c.x = faces[ic].x; roi_c.y = faces[ic].y; roi_c.width = (faces[ic].width); roi_c.height = (faces[ic].height); ac = roi_c.width * roi_c.height; // Get the area of current element (detected face) roi_b.x = faces[ib].x; roi_b.y = faces[ib].y; roi_b.width = (faces[ib].width); roi_b.height = (faces[ib].height); ab = roi_b.width * roi_b.height; // Get the area of biggest element, at beginning it is same as "current" element if (ac > ab) { ib = ic; roi_b.x = faces[ib].x; roi_b.y = faces[ib].y; roi_b.width = (faces[ib].width); roi_b.height = (faces[ib].height); } crop = frame(roi_b); resize(crop, res, Size(128, 128), 0, 0, INTER_LINEAR); // This will be needed later while saving images cvtColor(crop, gray, CV_BGR2GRAY); // Convert cropped image to Grayscale // Form a filename filename = ""; stringstream ssfn; ssfn << filenumber << ".png"; filename = ssfn.str(); filenumber++; imwrite(filename, gray); Point pt1(faces[ic].x, faces[ic].y); // Display detected faces on main window - live stream from camera Point pt2((faces[ic].x + faces[ic].height), (faces[ic].y + faces[ic].width)); rectangle(frame, pt1, pt2, Scalar(0, 255, 0), 2, 8, 0); } // Show image sstm << "Crop area size: " << roi_b.width << "x" << roi_b.height << " Filename: " << filename; text = sstm.str(); putText(frame, text, cvPoint(30, 30), FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0, 0, 255), 1, CV_AA); imshow("original", frame); // waitKey(); if (!crop.empty()) { imshow("detected", crop); // waitKey(); } else destroyWindow("detected"); } // Function main int main() { faceDetection *face; face = new faceDetection; // Load the cascade face_cascade = new CascadeClassifier; if (!face_cascade->load(face_cascade_name)){ printf("--(!)Error loading\n"); return (-1); } // Read the image file Mat frame = imread("lp.jpg"); // Apply the classifier to the frame if (!frame.empty()){ face->detectAndDisplay(frame); } else{ printf(" --(!) No captured frame -- Break!"); //break; } int c = waitKey(1000); if (27 == char(c)){ // break; } return 0; }