1. 程式人生 > >對抗生成網路原理和作用

對抗生成網路原理和作用

我們通過一個demo(gan.py )來講解對抗生成網路的原理和作用

1、建立真實資料
2、使用GAN訓練噪聲資料
3、通過1200次的訓練使得生成的資料的分佈跟真實資料的分佈差不多
4、通過debug方式一步步的講解

二、原理:

1、G(x)是生成的資料,放到判別D網路中,希望D網路輸出 0;x是真實的輸入,希望D網路輸出 1
這裡寫圖片描述
2、x輸入G網路通過一系列的引數生成G(x)
這裡寫圖片描述
3、對於D網路希望他的判別標準要高些,這樣生成的資料才更能接近真實資料,這就需要D_pre網路進行預先的判斷
這裡寫圖片描述

三、程式碼實現的主要步驟:

1、構造判別網路模型 3–14
2、構造生成網路模型 15–32
3、構造損失函式 33–35
4、訓練對抗生成網路

import argparse #1、引數解析的包
import numpy as np
from scipy.stats import norm
import tensorflow as tf
import matplotlib.pyplot as plt
from matplotlib import animation
import seaborn as sns #2、視覺化的庫

sns.set(color_codes=True)  

seed = 42
np.random.seed(seed)
tf.set_random_seed(seed)


class DataDistribution
(object):
def __init__(self): self.mu = 4 self.sigma = 0.5 #44、 def sample(self, N): samples = np.random.normal(self.mu, self.sigma, N) samples.sort() return samples #6、隨機初始化分佈,作為噪音點 class GeneratorDistribution(object): def __init__(self, range)
:
self.range = range def sample(self, N): return np.linspace(-self.range, self.range, N) + \ np.random.random(N) * 0.01 #16、 def linear(input, output_dim, scope=None, stddev=1.0): #17、定義一個隨機的初始化 norm = tf.random_normal_initializer(stddev=stddev) #18、初始化常量為0 const = tf.constant_initializer(0.0) with tf.variable_scope(scope or 'linear'): #19、w進行高斯處理話 w = tf.get_variable('w', [input.get_shape()[1], output_dim], initializer=norm) #20、b進行常量初始化 b = tf.get_variable('b', [output_dim], initializer=const) return tf.matmul(input, w) + b #29、生成網路只要兩層就可以產生最終的輸出結果 def generator(input, h_dim): h0 = tf.nn.softplus(linear(input, h_dim, 'g0')) h1 = linear(h0, 1, 'g1') return h1 # 15、h0~h3 是分層的 def discriminator(input, h_dim): #h0是第一層的輸出,h_dim * 2 隱層的資料 h0 = tf.tanh(linear(input, h_dim * 2, 'd0')) h1 = tf.tanh(linear(h0, h_dim * 2, 'd1')) h2 = tf.tanh(linear(h1, h_dim * 2, scope='d2')) #21、h3我們網路最總的輸出結果 h3 = tf.sigmoid(linear(h2, 1, scope='d3')) return h3 #24、優化器,學習率不斷衰減的策略 def optimizer(loss, var_list, initial_learning_rate): decay = 0.95 num_decay_steps = 150 batch = tf.Variable(0) #25、學習率不斷衰減的學習方式 learning_rate = tf.train.exponential_decay( initial_learning_rate, batch, num_decay_steps, decay, staircase=True ) #26、通過梯度下降定義求解器 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize( loss, global_step=batch, var_list=var_list ) return optimizer class GAN(object): #9、 def __init__(self, data, gen, num_steps, batch_size, log_every): self.data = data self.gen = gen self.num_steps = num_steps self.batch_size = batch_size self.log_every = log_every self.mlp_hidden_size = 4 self.learning_rate = 0.03 #10、 self._create_model() def _create_model(self): #11、構建D網路的骨架 with tf.variable_scope('D_pre'): #12、輸入,注意shape的引數 self.pre_input = tf.placeholder(tf.float32, shape=(self.batch_size, 1)) #13、label self.pre_labels = tf.placeholder(tf.float32, shape=(self.batch_size, 1)) #14、初始化操作 D_pre = discriminator(self.pre_input, self.mlp_hidden_size) #22、預測值與真實值的差異D_pre和pre_labels的差異 self.pre_loss = tf.reduce_mean(tf.square(D_pre - self.pre_labels)) #23、 self.pre_opt = optimizer(self.pre_loss, None, self.learning_rate) # This defines the generator network - it takes samples from a noise # distribution as input, and passes them through an MLP. with tf.variable_scope('Gen'): #27、噪音的輸入 self.z = tf.placeholder(tf.float32, shape=(self.batch_size, 1)) #28、G網路用於資料的生成 self.G = generator(self.z, self.mlp_hidden_size) # The discriminator tries to tell the difference between samples from the # true data distribution (self.x) and the generated samples (self.z). # # Here we create two copies of the discriminator network (that share parameters), # as you cannot use the same network with different inputs in TensorFlow. with tf.variable_scope('Disc') as scope: #30、D網路使用者判別功能 self.x = tf.placeholder(tf.float32, shape=(self.batch_size, 1)) #31、self.x 是真實的資料 self.D1 = discriminator(self.x, self.mlp_hidden_size) scope.reuse_variables() #32、self.G是生成的資料 self.D2 = discriminator(self.G, self.mlp_hidden_size) # Define the loss for discriminator and generator networks (see the original # paper for details), and create optimizers for both #33、判別網路的損失函式,希望D1趨近於1,希望D2趨近於0 self.loss_d = tf.reduce_mean(-tf.log(self.D1) - tf.log(1 - self.D2)) #34、生成網路(希望騙過判別網路)的損失函式,希望loss_g趨近於1 self.loss_g = tf.reduce_mean(-tf.log(self.D2)) self.d_pre_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='D_pre') self.d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Disc') self.g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Gen') #35、通過優化器不斷地優化loss_d和loss_g self.opt_d = optimizer(self.loss_d, self.d_params, self.learning_rate) self.opt_g = optimizer(self.loss_g, self.g_params, self.learning_rate) #36、開始訓練 def train(self): with tf.Session() as session: tf.global_variables_initializer().run() # pretraining discriminator num_pretrain_steps = 1000 #37、先訓練D-pro for step in range(num_pretrain_steps): #38、 d = (np.random.random(self.batch_size) - 0.5) * 10.0 #39、 labels = norm.pdf(d, loc=self.data.mu, scale=self.data.sigma) #40、迭代 pretrain_loss, _ = session.run([self.pre_loss, self.pre_opt], { self.pre_input: np.reshape(d, (self.batch_size, 1)), self.pre_labels: np.reshape(labels, (self.batch_size, 1)) }) #41、 self.weightsD = session.run(self.d_pre_params) # 42、copy weights from pre-training over to new D network for i, v in enumerate(self.d_params): session.run(v.assign(self.weightsD[i])) for step in range(self.num_steps): # 43、update discriminator x = self.data.sample(self.batch_size) z = self.gen.sample(self.batch_size) loss_d, _ = session.run([self.loss_d, self.opt_d], { self.x: np.reshape(x, (self.batch_size, 1)), self.z: np.reshape(z, (self.batch_size, 1)) }) # 45、迭代優化兩個網路 update generator z = self.gen.sample(self.batch_size) loss_g, _ = session.run([self.loss_g, self.opt_g], { self.z: np.reshape(z, (self.batch_size, 1)) }) if step % self.log_every == 0: print('{}: {}\t{}'.format(step, loss_d, loss_g)) if step % 100 == 0 or step==0 or step == self.num_steps -1 : self._plot_distributions(session) def _samples(self, session, num_points=10000, num_bins=100): xs = np.linspace(-self.gen.range, self.gen.range, num_points) bins = np.linspace(-self.gen.range, self.gen.range, num_bins) # data distribution d = self.data.sample(num_points) pd, _ = np.histogram(d, bins=bins, density=True) # generated samples zs = np.linspace(-self.gen.range, self.gen.range, num_points) g = np.zeros((num_points, 1)) for i in range(num_points // self.batch_size): g[self.batch_size * i:self.batch_size * (i + 1)] = session.run(self.G, { self.z: np.reshape( zs[self.batch_size * i:self.batch_size * (i + 1)], (self.batch_size, 1) ) }) pg, _ = np.histogram(g, bins=bins, density=True) return pd, pg def _plot_distributions(self, session): pd, pg = self._samples(session) p_x = np.linspace(-self.gen.range, self.gen.range, len(pd)) f, ax = plt.subplots(1) ax.set_ylim(0, 1) plt.plot(p_x, pd, label='real data') plt.plot(p_x, pg, label='generated data') plt.title('1D Generative Adversarial Network') plt.xlabel('Data values') plt.ylabel('Probability density') plt.legend() plt.show() def main(args): #3、夠造一個model model = GAN( #4、引數 DataDistribution(), #5、 GeneratorDistribution(range=8), #7、定義引數 args.num_steps, args.batch_size, #8、隔多長時間 args.log_every, ) model.train() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--num-steps', type=int, default=1200, help='the number of training steps to take') parser.add_argument('--batch-size', type=int, default=12, help='the batch size') parser.add_argument('--log-every', type=int, default=10, help='print loss after this many steps') return parser.parse_args() if __name__ == '__main__': main(parse_args())