golang的臨時物件池sync.Pool
今天在寫碼之時,發現了同事用到了sync.pool。因不知其因,遂Google之。雖然大概知道其原因和用法。還不能融匯貫通。故寫此記,方便日後查閱。直至明瞭。
正文
在高併發或者大量的資料請求的場景中,我們會遇到很多問題,垃圾回收就是其中之一(garbage collection),為了減少優化GC,我們一般想到的方法就是能夠讓物件得以重用。這就需要一個物件池來儲存待回收物件,等待下次重用,從而減少物件產生數量。我們可以把sync.Pool型別值看作是存放可被重複使用的值的容器。此類容器是自動伸縮的、高效的,同時也是併發安全的。為了描述方便,我們也會把sync.Pool型別的值稱為臨時物件池,而把存於其中的值稱為物件值。這個類設計的目的是用來儲存和複用臨時物件,以減少記憶體分配,降低CG壓力。
我們看下Go的原始碼:
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sync
import (
"internal/race"
"runtime"
"sync/atomic"
"unsafe"
)
// A Pool is a set of temporary objects that may be individually saved and
// retrieved.
//
// Any item stored in the Pool may be removed automatically at any time without
// notification. If the Pool holds the only reference when this happens, the
// item might be deallocated.
//
// A Pool is safe for use by multiple goroutines simultaneously.
//
// Pool's purpose is to cache allocated but unused items for later reuse,
// relieving pressure on the garbage collector. That is, it makes it easy to
// build efficient, thread-safe free lists. However, it is not suitable for all
// free lists.
//
// An appropriate use of a Pool is to manage a group of temporary items
// silently shared among and potentially reused by concurrent independent
// clients of a package. Pool provides a way to amortize allocation overhead
// across many clients.
//
// An example of good use of a Pool is in the fmt package, which maintains a
// dynamically-sized store of temporary output buffers. The store scales under
// load (when many goroutines are actively printing) and shrinks when
// quiescent.
//
// On the other hand, a free list maintained as part of a short-lived object is
// not a suitable use for a Pool, since the overhead does not amortize well in
// that scenario. It is more efficient to have such objects implement their own
// free list.
//
type Pool struct {
local unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
localSize uintptr // size of the local array
// New optionally specifies a function to generate
// a value when Get would otherwise return nil.
// It may not be changed concurrently with calls to Get.
New func() interface{}
}
// Local per-P Pool appendix.
type poolLocal struct {
private interface{} // Can be used only by the respective P.
shared []interface{} // Can be used by any P.
Mutex // Protects shared.
pad [128]byte // Prevents false sharing.
}
// Put adds x to the pool.
func (p *Pool) Put(x interface{}) {
if race.Enabled {
// Under race detector the Pool degenerates into no-op.
// It's conforming, simple and does not introduce excessive
// happens-before edges between unrelated goroutines.
return
}
if x == nil {
return
}
l := p.pin()
if l.private == nil {
l.private = x
x = nil
}
runtime_procUnpin()
if x == nil {
return
}
l.Lock()
l.shared = append(l.shared, x)
l.Unlock()
}
// Get selects an arbitrary item from the Pool, removes it from the
// Pool, and returns it to the caller.
// Get may choose to ignore the pool and treat it as empty.
// Callers should not assume any relation between values passed to Put and
// the values returned by Get.
//
// If Get would otherwise return nil and p.New is non-nil, Get returns
// the result of calling p.New.
func (p *Pool) Get() interface{} {
if race.Enabled {
if p.New != nil {
return p.New()
}
return nil
}
l := p.pin()
x := l.private
l.private = nil
runtime_procUnpin()
if x != nil {
return x
}
l.Lock()
last := len(l.shared) - 1
if last >= 0 {
x = l.shared[last]
l.shared = l.shared[:last]
}
l.Unlock()
if x != nil {
return x
}
return p.getSlow()
}
func (p *Pool) getSlow() (x interface{}) {
// See the comment in pin regarding ordering of the loads.
size := atomic.LoadUintptr(&p.localSize) // load-acquire
local := p.local // load-consume
// Try to steal one element from other procs.
pid := runtime_procPin()
runtime_procUnpin()
for i := 0; i < int(size); i++ {
l := indexLocal(local, (pid+i+1)%int(size))
l.Lock()
last := len(l.shared) - 1
if last >= 0 {
x = l.shared[last]
l.shared = l.shared[:last]
l.Unlock()
break
}
l.Unlock()
}
if x == nil && p.New != nil {
x = p.New()
}
return x
}
// pin pins the current goroutine to P, disables preemption and returns poolLocal pool for the P.
// Caller must call runtime_procUnpin() when done with the pool.
func (p *Pool) pin() *poolLocal {
pid := runtime_procPin()
// In pinSlow we store to localSize and then to local, here we load in opposite order.
// Since we've disabled preemption, GC can not happen in between.
// Thus here we must observe local at least as large localSize.
// We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
s := atomic.LoadUintptr(&p.localSize) // load-acquire
l := p.local // load-consume
if uintptr(pid) < s {
return indexLocal(l, pid)
}
return p.pinSlow()
}
func (p *Pool) pinSlow() *poolLocal {
// Retry under the mutex.
// Can not lock the mutex while pinned.
runtime_procUnpin()
allPoolsMu.Lock()
defer allPoolsMu.Unlock()
pid := runtime_procPin()
// poolCleanup won't be called while we are pinned.
s := p.localSize
l := p.local
if uintptr(pid) < s {
return indexLocal(l, pid)
}
if p.local == nil {
allPools = append(allPools, p)
}
// If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
size := runtime.GOMAXPROCS(0)
local := make([]poolLocal, size)
atomic.StorePointer((*unsafe.Pointer)(&p.local), unsafe.Pointer(&local[0])) // store-release
atomic.StoreUintptr(&p.localSize, uintptr(size)) // store-release
return &local[pid]
}
func poolCleanup() {
// This function is called with the world stopped, at the beginning of a garbage collection.
// It must not allocate and probably should not call any runtime functions.
// Defensively zero out everything, 2 reasons:
// 1. To prevent false retention of whole Pools.
// 2. If GC happens while a goroutine works with l.shared in Put/Get,
// it will retain whole Pool. So next cycle memory consumption would be doubled.
for i, p := range allPools {
allPools[i] = nil
for i := 0; i < int(p.localSize); i++ {
l := indexLocal(p.local, i)
l.private = nil
for j := range l.shared {
l.shared[j] = nil
}
l.shared = nil
}
p.local = nil
p.localSize = 0
}
allPools = []*Pool{}
}
var (
allPoolsMu Mutex
allPools []*Pool
)
func init() {
runtime_registerPoolCleanup(poolCleanup)
}
func indexLocal(l unsafe.Pointer, i int) *poolLocal {
return &(*[1000000]poolLocal)(l)[i]
}
// Implemented in runtime.
func runtime_registerPoolCleanup(cleanup func())
func runtime_procPin() int
func runtime_procUnpin()
sync.Pool 最常用的兩個函式Get/Put
var pool = &sync.Pool{New:func()interface{}{return NewObject()}}
pool.Put()
Pool.Get()
物件池在Get的時候沒有裡面沒有物件會返回nil,所以我們需要New function來確保當獲取物件物件池為空時,重新生成一個物件返回,前者的功能是從池中獲取一個interface{}型別的值,而後者的作用則是把一個interface{}型別的值放置於池中。
// 建立物件
var pool = &sync.Pool{New:func()interface{}{return "Hello,xiequan"}}
// 準備放入的字串
val := "Hello,World!"
// 放入
pool.Put(val)
// 取出
log.Println(pool.Get())
// 再取就沒有了,會自動呼叫NEW
log.Println(pool.Get())
再來看一個例子:
package main
import (
"fmt"
"runtime"
"runtime/debug"
"sync"
"sync/atomic"
)
func main() {
// 禁用GC,並保證在main函式執行結束前恢復GC
defer debug.SetGCPercent(debug.SetGCPercent(-1))
var count int32
newFunc := func() interface{} {
return atomic.AddInt32(&count, 1)
}
pool := sync.Pool{New: newFunc}
// New 欄位值的作用
v1 := pool.Get()
fmt.Printf("v1: %v\n", v1)
// 臨時物件池的存取
pool.Put(newFunc())
pool.Put(newFunc())
pool.Put(newFunc())
v2 := pool.Get()
fmt.Printf("v2: %v\n", v2)
// 垃圾回收對臨時物件池的影響
debug.SetGCPercent(100)
runtime.GC()
v3 := pool.Get()
fmt.Printf("v3: %v\n", v3)
pool.New = nil
v4 := pool.Get()
fmt.Printf("v4: %v\n", v4)
}
通過Get方法獲取到的值是任意的。如果一個臨時物件池的Put方法未被呼叫過,且它的New欄位也未曾被賦予一個非nil的函式值,那麼它的Get方法返回的結果值就一定會是nil。Get方法返回的不一定就是存在於池中的值。不過,如果這個結果值是池中的,那麼在該方法返回它之前就一定會把它從池中刪除掉。
這樣一個臨時物件池在功能上看似與一個通用的快取池相差無幾。但是實際上,臨時物件池本身的特性決定了它是一個“個性”非常鮮明的同步工具。我們在這裡說明它的兩個非常突出的特性。
來看一個syscn.pool和bytes.Buffer使用的例子:
type Dao struct {
bp sync.Pool
}
func New(c *conf.Config) (d *Dao) {
d = &Dao{
bp: sync.Pool{
New: func() interface{} {
return &bytes.Buffer{}
},
},
}
return
}
func (d *Dao) Infoc(args ...string) (value string, err error) {
if len(args) == 0 {
return
}
// fetch a buf from bufpool
buf, ok := d.bp.Get().(*bytes.Buffer)
if !ok {
return "", ErrType
}
// append first arg
if _, err := buf.WriteString(args[0]); err != nil {
return "", err
}
for _, arg := range args[1:] {
// append ,arg
if _, err := buf.WriteString(defaultSpliter); err != nil {
return "", err
}
if _, err := buf.WriteString(strings.Replace(arg, defaultSpliter, defaultReplacer, -1)); err != nil {
return "", err
}
}
value = buf.String()
buf.Reset()
d.bp.Put(buf)
return
}
在實現過程中還要特別注意的是Pool本身也是一個物件,要把Pool物件在程式開始的時候初始化為全域性唯一。
物件池使用是較簡單的,但原生的sync.Pool有個較大的問題:我們不能自由控制Pool中元素的數量,放進Pool中的物件每次GC發生時都會被清理掉。這使得sync.Pool做簡單的物件池還可以,但做連線池就有點心有餘而力不足了,比如:在高併發的情景下一旦Pool中的連線被GC清理掉,那每次連線DB都需要重新三次握手建立連線,這個代價就較大了。
總結
物件池的一些適用場景(比如作為臨時且狀態無關的資料的暫存處),以及一些不適用的場景(比如用來存放資料庫連線的例項)。如果我們在做實現技術的選型的時候把臨時物件池作為了候選之一,那麼就應該好好想想它的“個性”是不是符合你的需要。如果真的適合,那麼它的特性一定會為你的程式增光添彩,無論在功能上還是在效能上。而如果它被用在了不恰當的地方,那麼就只能適得其反了
參考文獻: