Java語言中Object物件的hashCode()取值的底層演算法是怎樣實現的?,object hashcode
http://www.bkjia.com/ASPjc/919437.html
Java語言中,Object物件有個特殊的方法:hashcode(), hashcode()表示的是JVM虛擬機器為這個Object物件分配的一個int型別的數值,JVM會使用物件的hashcode值來提高對HashMap、Hashtable雜湊表存取物件的使用效率。
關於Object物件的hashCode()返回值,網上對它就是一個簡單的描述:“JVM根據某種策略生成的”,那麼這種策略到底是什麼呢?我有一個毛病,遇到這種含糊其辭的東西,就想探個究竟,所以,本文就將hashCode()本地方法的實現給扒出來,也給大家在瞭解hashCode()的過程中提供一點點幫助吧。
本文將根據openJDK 7原始碼,向展示Java語言中的Object物件的hashCode() 生成的神祕面紗,我將一步一步地向讀者介紹Java Object 的hashcode()方法到底底層呼叫了什麼函式。為了更好地瞭解這個過程,你可以自己下載openJDK 7 原始碼,親自檢視和跟蹤原始碼,瞭解hashCode()的生成過程:
openJDK 7 下載地址1:http://download.java.net/openjdk/jdk7 (官網,下載速度較慢)
openJDK 7 下載地址2 :openjdk-7-fcs-src-b147-27_jun_2011.zip (csdn 網友提供的資源,很不錯)
1.檢視openJDK 關於 java.lang.Object類及其hashcode()方法的定義:
進入openjdk\jdk\src\share\classes\java\lang 目錄下,可以看到 Object.java原始碼,開啟,檢視hashCode()的定義如下所示:
即該方法是一個本地方法,Java將呼叫本地方法庫對此方法的實現。由於Object類中有JNI方法呼叫,按照JNI的規則,應當生成JNI 的標頭檔案,在此目錄下執行javah -jni java.lang.Object 指令,將生成一個java_lang_Object.hpublic native int hashCode();
java_lang_Object.h標頭檔案關於hashcode方法的資訊如下所示:
/* * Class: java_lang_Object * Method: hashCode * Signature: ()I */ JNIEXPORT jint JNICALL Java_java_lang_Object_hashCode (JNIEnv *, jobject);
2. Object物件的hashCode()方法在C語言檔案Object.c中實現
開啟openjdk\jdk\src\share\native\java\lang\目錄,檢視Object.c檔案,可以看到hashCode()的方法被註冊成有JVM_IHashCode方法指標來處理:
#include <stdio.h> #include <signal.h> #include <limits.h> #include "jni.h" #include "jni_util.h" #include "jvm.h" #include "java_lang_Object.h" static JNINativeMethod methods[] = { {"hashCode", "()I", (void *)&JVM_IHashCode},//hashcode的方法指標JVM_IHashCode {"wait", "(J)V", (void *)&JVM_MonitorWait}, {"notify", "()V", (void *)&JVM_MonitorNotify}, {"notifyAll", "()V", (void *)&JVM_MonitorNotifyAll}, {"clone", "()Ljava/lang/Object;", (void *)&JVM_Clone}, }; JNIEXPORT void JNICALL Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls) { (*env)->RegisterNatives(env, cls, methods, sizeof(methods)/sizeof(methods[0])); } JNIEXPORT jclass JNICALL Java_java_lang_Object_getClass(JNIEnv *env, jobject this) { if (this == NULL) { JNU_ThrowNullPointerException(env, NULL); return 0; } else { return (*env)->GetObjectClass(env, this); } }
3.JVM_IHashCode方法指標在 openjdk\hotspot\src\share\vm\prims\jvm.cpp中定義,如下:
JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle)) JVMWrapper("JVM_IHashCode"); // as implemented in the classic virtual machine; return 0 if object is NULL return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ; JVM_END
如上可以看出,JVM_IHashCode方法中呼叫了ObjectSynchronizer::FastHashCode方法
4. ObjectSynchronizer::fashHashCode方法的實現:
ObjectSynchronizer::fashHashCode()方法在openjdk\hotspot\src\share\vm\runtime\synchronizer.cpp 檔案中實現,其核心程式碼實現如下所示:
// hashCode() generation : // // Possibilities: // * MD5Digest of {obj,stwRandom} // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function. // * A DES- or AES-style SBox[] mechanism // * One of the Phi-based schemes, such as: // 2654435761 = 2^32 * Phi (golden ratio) // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ; // * A variation of Marsaglia's shift-xor RNG scheme. // * (obj ^ stwRandom) is appealing, but can result // in undesirable regularity in the hashCode values of adjacent objects // (objects allocated back-to-back, in particular). This could potentially // result in hashtable collisions and reduced hashtable efficiency. // There are simple ways to "diffuse" the middle address bits over the // generated hashCode values: // static inline intptr_t get_next_hash(Thread * Self, oop obj) { intptr_t value = 0 ; if (hashCode == 0) { // This form uses an unguarded global Park-Miller RNG, // so it's possible for two threads to race and generate the same RNG. // On MP system we'll have lots of RW access to a global, so the // mechanism induces lots of coherency traffic. value = os::random() ; } else if (hashCode == 1) { // This variation has the property of being stable (idempotent) // between STW operations. This can be useful in some of the 1-0 // synchronization schemes. intptr_t addrBits = intptr_t(obj) >> 3 ; value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ; } else if (hashCode == 2) { value = 1 ; // for sensitivity testing } else if (hashCode == 3) { value = ++GVars.hcSequence ; } else if (hashCode == 4) { value = intptr_t(obj) ; } else { // Marsaglia's xor-shift scheme with thread-specific state // This is probably the best overall implementation -- we'll // likely make this the default in future releases. unsigned t = Self->_hashStateX ; t ^= (t << 11) ; Self->_hashStateX = Self->_hashStateY ; Self->_hashStateY = Self->_hashStateZ ; Self->_hashStateZ = Self->_hashStateW ; unsigned v = Self->_hashStateW ; v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ; Self->_hashStateW = v ; value = v ; } value &= markOopDesc::hash_mask; if (value == 0) value = 0xBAD ; assert (value != markOopDesc::no_hash, "invariant") ; TEVENT (hashCode: GENERATE) ; return value; } // ObjectSynchronizer::FastHashCode方法的實現,該方法最終會返回我們期望已久的hashcode intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) { if (UseBiasedLocking) { // NOTE: many places throughout the JVM do not expect a safepoint // to be taken here, in particular most operations on perm gen // objects. However, we only ever bias Java instances and all of // the call sites of identity_hash that might revoke biases have // been checked to make sure they can handle a safepoint. The // added check of the bias pattern is to avoid useless calls to // thread-local storage. if (obj->mark()->has_bias_pattern()) { // Box and unbox the raw reference just in case we cause a STW safepoint. Handle hobj (Self, obj) ; // Relaxing assertion for bug 6320749. assert (Universe::verify_in_progress() || !SafepointSynchronize::is_at_safepoint(), "biases should not be seen by VM thread here"); BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current()); obj = hobj() ; assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now"); } } // hashCode() is a heap mutator ... // Relaxing assertion for bug 6320749. assert (Universe::verify_in_progress() || !SafepointSynchronize::is_at_safepoint(), "invariant") ; assert (Universe::verify_in_progress() || Self->is_Java_thread() , "invariant") ; assert (Universe::verify_in_progress() || ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ; ObjectMonitor* monitor = NULL; markOop temp, test; intptr_t hash; markOop mark = ReadStableMark (obj); // object should remain ineligible for biased locking assert (!mark->has_bias_pattern(), "invariant") ; if (mark->is_neutral()) { hash = mark->hash(); // this is a normal header if (hash) { // if it has hash, just return it return hash; } hash = get_next_hash(Self, obj); // allocate a new hash code temp = mark->copy_set_hash(hash); // merge the hash code into header // use (machine word version) atomic operation to install the hash test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark); if (test == mark) { return hash; } // If atomic operation failed, we must inflate the header // into heavy weight monitor. We could add more code here // for fast path, but it does not worth the complexity. } else if (mark->has_monitor()) { monitor = mark->monitor(); temp = monitor->header(); assert (temp->is_neutral(), "invariant") ; hash = temp->hash(); if (hash) { return hash; } // Skip to the following code to reduce code size } else if (Self->is_lock_owned((address)mark->locker())) { temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned assert (temp->is_neutral(), "invariant") ; hash = temp->hash(); // by current thread, check if the displaced if (hash) { // header contains hash code return hash; } // WARNING: // The displaced header is strictly immutable. // It can NOT be changed in ANY cases. So we have // to inflate the header into heavyweight monitor // even the current thread owns the lock. The reason // is the BasicLock (stack slot) will be asynchronously // read by other threads during the inflate() function. // Any change to stack may not propagate to other threads // correctly. } // Inflate the monitor to set hash code monitor = ObjectSynchronizer::inflate(Self, obj); // Load displaced header and check it has hash code mark = monitor->header(); assert (mark->is_neutral(), "invariant") ; hash = mark->hash(); if (hash == 0) { hash = get_next_hash(Self, obj); temp = mark->copy_set_hash(hash); // merge hash code into header assert (temp->is_neutral(), "invariant") ; test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark); if (test != mark) { // The only update to the header in the monitor (outside GC) // is install the hash code. If someone add new usage of // displaced header, please update this code hash = test->hash(); assert (test->is_neutral(), "invariant") ; assert (hash != 0, "Trivial unexpected object/monitor header usage."); } } // We finally get the hash ,看到這句話,就特別興奮,WE FINALLY GET THE HASH!!!! return hash; }
好了,經過上述如此複雜步驟,終於生成了我們的hashcode了,上述的程式碼是使用的C++實現的,我是看不懂啦,不過有一點可以確定:
Java 中Object物件的hashcode()返回值一定不會是Object物件的記憶體地址這麼簡單!
即hashcode()返回的不是物件在記憶體中的地址。