解決spark執行時Java heap space問題
阿新 • • 發佈:2019-02-07
問題描述:
在執行spark程式時,需要讀取200w資料作為快取。在利用.broadcast廣播這些資料時,遇到Exception in thread "main" java.lang.OutOfMemoryError: Java heap space問題。
報錯資訊如下:
進一步地,檢視報錯位置之前的幾句資訊:15/09/15 05:26:09 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on ip-172-31-10-136.ec2.internal:34472 in memory (size: 2.0 KB, free: 397.3 MB) 15/09/15 05:26:09 INFO spark.ContextCleaner: Cleaned broadcast 3 Exception in thread "main" java.lang.OutOfMemoryError: Java heap space at java.io.ObjectOutputStream$HandleTable.growEntries(ObjectOutputStream.java:2351) at java.io.ObjectOutputStream$HandleTable.assign(ObjectOutputStream.java:2276) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1428) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) at java.util.ArrayList.writeObject(ArrayList.java:762) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:497) at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:988) at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496) at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432) at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178) at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:44) at org.apache.spark.broadcast.TorrentBroadcast$.blockifyObject(TorrentBroadcast.scala:202) at org.apache.spark.broadcast.TorrentBroadcast.writeBlocks(TorrentBroadcast.scala:101) at org.apache.spark.broadcast.TorrentBroadcast.<init>(TorrentBroadcast.scala:84) at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:34) at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:29) at org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:62) at org.apache.spark.SparkContext.broadcast(SparkContext.scala:1051) at org.apache.spark.api.java.JavaSparkContext.broadcast(JavaSparkContext.scala:648) at com.myspark.spark.task.Spark_task.main(Spark_task.java:77) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:497) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189)
說明記憶體不夠了。15/09/15 05:26:09 INFO storage.MemoryStore: Block broadcast_3 of size 3488 dropped from memory (free 280236528) 15/09/15 05:26:09 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on ip-172-31-10-135.ec2.internal:51942 in memory (size: 2.0 KB, free: 398.1 MB) 15/09/15 05:26:09 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on ip-172-31-10-136.ec2.internal:34472 in memory (size: 2.0 KB, free: 397.3 MB) 15/09/15 05:26:09 INFO spark.ContextCleaner: Cleaned broadcast 3
解決辦法:
spark不能通過java -Xms32m -Xmx800m className來新增記憶體,spark不支援該格式,從./bin/spark-submit --help中也沒有看到該格式。所以只能從spark本身入手。
檢視./bin/spark-submit --help,發現
--driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 512M).
於是,修改執行提交語句為,執行成功:
./bin/spark-submit --class com.myspark.spark.task.Spark_task --master yarn-client --driver-memory 1g /home/hadoop/myspark/spark-example-test-0.0.1-SNAPSHOT.jar s3://********** s3://*********** /test/myspark/spark35
對於executor-memory,由於我是在基於yarn的spark上執行的,可能這個是有yarn自己來控制。這裡設定時,是無效的。可能在local模式時,可以設定。具體細節待實驗研究。
--executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G)
【附】
./bin/spark-submit --help具體資訊如下:
Options:
--master MASTER_URL spark://host:port, mesos://host:port, yarn, or local.
--deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or
on one of the worker machines inside the cluster ("cluster")
(Default: client).
--class CLASS_NAME Your application's main class (for Java / Scala apps).
--name NAME A name of your application.
--jars JARS Comma-separated list of local jars to include on the driver
and executor classpaths.
--packages Comma-separated list of maven coordinates of jars to include
on the driver and executor classpaths. Will search the local
maven repo, then maven central and any additional remote
repositories given by --repositories. The format for the
coordinates should be groupId:artifactId:version.
--repositories Comma-separated list of additional remote repositories to
search for the maven coordinates given with --packages.
--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place
on the PYTHONPATH for Python apps.
--files FILES Comma-separated list of files to be placed in the working
directory of each executor.
--conf PROP=VALUE Arbitrary Spark configuration property.
--properties-file FILE Path to a file from which to load extra properties. If not
specified, this will look for conf/spark-defaults.conf.
--driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 512M).
--driver-java-options Extra Java options to pass to the driver.
--driver-library-path Extra library path entries to pass to the driver.
--driver-class-path Extra class path entries to pass to the driver. Note that
jars added with --jars are automatically included in the
classpath.
--executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G).
--proxy-user NAME User to impersonate when submitting the application.
--help, -h Show this help message and exit
--verbose, -v Print additional debug output
--version, Print the version of current Spark
Spark standalone with cluster deploy mode only:
--driver-cores NUM Cores for driver (Default: 1).
--supervise If given, restarts the driver on failure.
--kill SUBMISSION_ID If given, kills the driver specified.
--status SUBMISSION_ID If given, requests the status of the driver specified.
Spark standalone and Mesos only:
--total-executor-cores NUM Total cores for all executors.
YARN-only:
--driver-cores NUM Number of cores used by the driver, only in cluster mode
(Default: 1).
--executor-cores NUM Number of cores per executor (Default: 1).
--queue QUEUE_NAME The YARN queue to submit to (Default: "default").
--num-executors NUM Number of executors to launch (Default: 2).
--archives ARCHIVES Comma separated list of archives to be extracted into the
working directory of each executor.