1. 程式人生 > >Java解讀-ThreadLocal詳解與應用

Java解讀-ThreadLocal詳解與應用

ThreadLocal概念

ThreadLocal 字面意思來看有點像“執行緒的本地實現版本”,實際上真正含義是ThreadLocalVariable(執行緒本地區域性變數),所以把它命名為ThreadLocalVar更加合適。

ThreadLocal 是用來解決共享物件(單個執行緒內共享)的多執行緒訪問問題的,使用場合主要解決多執行緒中資料因併發產生不一致問題。

ThreadLocal為每個執行緒的中併發訪問的資料提供一個副本,通過訪問副本來執行業務,這樣的結果是耗費了記憶體,但是確避免執行緒同步所帶來效能消耗,也減少了執行緒併發控制的複雜度。

只要使用了“池”(執行緒池、連線池),再使用ThreadLocal時,尤其需要注意,每個執行緒在使用ThreadLocal的時候,必須對ThreadLocal執行一次clear操作,避免出現執行緒汙染問題,這也是最常踩的坑(近期我們就遇到過2次類似情況)。

### ThreadLocal與多執行緒
ThreadLocal和Synchonized都用於解決多執行緒併發訪問問題。但是ThreadLocal與synchronized有本質的區別。synchronized是利用鎖的機制,使變數或程式碼塊在某一時該只能被一個執行緒訪問。而ThreadLocal為每一個執行緒都提供了變數的副本,使得每個執行緒在某一時間訪問到的並不是同一個物件,這樣就隔離了多個執行緒對資料的資料共享。而Synchronized卻正好相反,它用於在多個執行緒間通訊時能夠獲得資料共享。

Synchronized用於執行緒間的資料共享,而ThreadLocal則用於執行緒間的資料隔離,它們處理不同的問題域。

對於多執行緒資源共享的問題,同步機制採用了“以時間換空間”的方式,而ThreadLocal採用了“以空間換時間”的方式。前者僅提供一份變數,讓不同的執行緒單執行緒排隊等待訪問,而後者為每一個執行緒都提供了一份變數,因此可以互不影響的同時訪問。

ThreadLocal導致的記憶體洩露

ThreadLocal 的生命週期和它相應的執行緒直接關聯。如果執行緒被終止並且被垃圾回收器收集,它相應的ThreadLocal 變數也將會被回收。

記憶體問題主要發生在當ThreadLocal變數使用在執行在應用伺服器上的Java EE應用程式裡邊時。應用伺服器通過使用執行緒池來管理執行緒以保證資源安全和提高效能。(參見Tomcat HTTP conncector配置為例)。

例如,一個HttpServletRequest傳送到應用伺服器的ServletEngine,一個空閒的執行緒將會從執行緒池中取出並且和servlet的應用邏輯進行連線。如果這個servlet或者它呼叫的Java類正在使用ThreadLocal變數,這些變數將會和當前的工作執行緒連線。如果servlet完成並將相應傳送給客戶端,那麼與之連線的執行緒會被返回到執行緒池中,以便用來處理其他的請求。這意味著執行緒物件及其相關聯的ThreadLocal變數沒有被垃圾回收器收集,因為其執行緒物件還存在著。

根據池中的執行緒數量(在執行環境中大於100個執行緒是正常的)以及ThreadLocal變數中物件的大小,可能會發生致命的記憶體問題。例如對執行緒池中的200個執行緒進行配置以及將ThreadLocal變數的大小設定為5MB,這將會導致有1GB的堆空間被這些變數所佔用。這將會導致一個GC的開銷並且可能會由於OutOfMemoryError導致JVM崩潰。

ThreadLocal應用例項

* servlet中儲存上下文使用者資訊 *

abstract class ThreadContext {
    private static final Logger log = LoggerFactory.getLogger(ThreadContext.class);
    private static final ThreadLocal<Map<Object, Object>> resources = new InheritableThreadLocalMap<Map<Object, Object>>();

    protected ThreadContext() {
    }

    public static Map<Object, Object> getResources() {
        return resources != null ? new HashMap<Object, Object>(resources.get()) : null;
    }

    public static void setResources(Map<Object, Object> newResources) {
        if (CollectionUtils.isEmpty(newResources)) {
            return;
        }
        resources.get().clear();
        resources.get().putAll(newResources);
    }

    private static Object getValue(Object key) {
        return resources.get().get(key);
    }

    public static Object get(Object key) {
        if (log.isTraceEnabled()) {
            String msg = "get() - in thread [" + Thread.currentThread().getName() + "]";
            log.trace(msg);
        }

        Object value = getValue(key);
        if ((value != null) && log.isTraceEnabled()) {
            String msg = "Retrieved value of type [" + value.getClass().getName() + "] for key [" +
                    key + "] " + "bound to thread [" + Thread.currentThread().getName() + "]";
            log.trace(msg);
        }
        return value;
    }

    public static void put(Object key, Object value) {
        if (key == null) {
            throw new IllegalArgumentException("key cannot be null");
        }

        if (value == null) {
            remove(key);
            return;
        }

        resources.get().put(key, value);

        if (log.isTraceEnabled()) {
            String msg = "Bound value of type [" + value.getClass().getName() + "] for key [" +
                    key + "] to thread " + "[" + Thread.currentThread().getName() + "]";
            log.trace(msg);
        }
    }

    public static Object remove(Object key) {
        Object value = resources.get().remove(key);

        if ((value != null) && log.isTraceEnabled()) {
            String msg = "Removed value of type [" + value.getClass().getName() + "] for key [" +
                    key + "]" + "from thread [" + Thread.currentThread().getName() + "]";
            log.trace(msg);
        }

        return value;
    }

    public static void remove() {
        resources.remove();
    }

    private static final class InheritableThreadLocalMap<T extends Map<Object, Object>> extends InheritableThreadLocal<Map<Object, Object>> {
        protected Map<Object, Object> initialValue() {
            return new HashMap<Object, Object>();
        }

        protected Map<Object, Object> childValue(Map<Object, Object> parentValue) {
            if (parentValue != null) {
                return (Map<Object, Object>) ((HashMap<Object, Object>) parentValue).clone();
            } else {
                return null;
            }
        }
    }
}

實現資料庫連線Connection物件執行緒隔離

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

public class ConnectionManager {

        private static ThreadLocal<Connection> connectionHolder = new ThreadLocal<Connection>() {
        @Override
        protected Connection initialValue() {
            Connection conn = null;
            try {
                conn = DriverManager.getConnection(
                        "jdbc:mysql://localhost:3306/test", "username",
                        "password");
            } catch (SQLException e) {
                e.printStackTrace();
            }
            return conn;
        }
    };

    public static Connection getConnection() {
        return connectionHolder.get();
    }

    public static void setConnection(Connection conn) {
        connectionHolder.set(conn);
    }
}

* hibernate中典型的ThreadLocal的應用:*

private static final ThreadLocal threadSession = new ThreadLocal();  

public static Session getSession() throws InfrastructureException {  
    Session s = (Session) threadSession.get();  
    try {  
        if (s == null) {  
            s = getSessionFactory().openSession();  
            threadSession.set(s);  
        }  
    } catch (HibernateException ex) {  
        throw new InfrastructureException(ex);  
    }  
    return s;  
}  

* Spring多資料來源實現中的應用*

public class MyDataSource extends AbstractRoutingDataSource {

    private static final ThreadLocal<String> dataSourceKey = new ThreadLocal<String>();

    public static void setDataSourceKey(String dataSource) {
        dataSourceKey.set(dataSource);
    }

    protected Object determineCurrentLookupKey() {
        String dsName = dataSourceKey.get();
        dataSourceKey.remove(); //這裡需要注意的時,每次我們返回當前資料來源的值得時候都需要移除ThreadLocal的值,這是為了避免同一執行緒上一次方法呼叫對之後呼叫的影響
        return dsName;
    }

}

ThreadLocal實現原理

程式碼細節就不說明了,粘出來有興趣的可以閱讀以下,以下為JDK7版本的實現。

/*
 * Copyright (c) 1997, 2007, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.

 */

package java.lang;
import java.lang.ref.*;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * This class provides thread-local variables.  These variables differ from
 * their normal counterparts in that each thread that accesses one (via its
 * <tt>get</tt> or <tt>set</tt> method) has its own, independently initialized
 * copy of the variable.  <tt>ThreadLocal</tt> instances are typically private
 * static fields in classes that wish to associate state with a thread (e.g.,
 * a user ID or Transaction ID).
 *
 * <p>For example, the class below generates unique identifiers local to each
 * thread.
 * A thread's id is assigned the first time it invokes <tt>ThreadId.get()</tt>
 * and remains unchanged on subsequent calls.
 * <pre>
 * import java.util.concurrent.atomic.AtomicInteger;
 *
 * public class ThreadId {
 *     // Atomic integer containing the next thread ID to be assigned
 *     private static final AtomicInteger nextId = new AtomicInteger(0);
 *
 *     // Thread local variable containing each thread's ID
 *     private static final ThreadLocal<Integer> threadId =
 *         new ThreadLocal<Integer>() {
 *             @Override protected Integer initialValue() {
 *                 return nextId.getAndIncrement();
 *         }
 *     };
 *
 *     // Returns the current thread's unique ID, assigning it if necessary
 *     public static int get() {
 *         return threadId.get();
 *     }
 * }
 * </pre>
 * <p>Each thread holds an implicit reference to its copy of a thread-local
 * variable as long as the thread is alive and the <tt>ThreadLocal</tt>
 * instance is accessible; after a thread goes away, all of its copies of
 * thread-local instances are subject to garbage collection (unless other
 * references to these copies exist).
 *
 * @author  Josh Bloch and Doug Lea
 * @since   1.2
 */
public class ThreadLocal<T> {
    /**
     * ThreadLocals rely on per-thread linear-probe hash maps attached
     * to each thread (Thread.threadLocals and
     * inheritableThreadLocals).  The ThreadLocal objects act as keys,
     * searched via threadLocalHashCode.  This is a custom hash code
     * (useful only within ThreadLocalMaps) that eliminates collisions
     * in the common case where consecutively constructed ThreadLocals
     * are used by the same threads, while remaining well-behaved in
     * less common cases.
     */
    private final int threadLocalHashCode = nextHashCode();

    /**
     * The next hash code to be given out. Updated atomically. Starts at
     * zero.
     */
    private static AtomicInteger nextHashCode =
        new AtomicInteger();

    /**
     * The difference between successively generated hash codes - turns
     * implicit sequential thread-local IDs into near-optimally spread
     * multiplicative hash values for power-of-two-sized tables.
     */
    private static final int HASH_INCREMENT = 0x61c88647;

    /**
     * Returns the next hash code.
     */
    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }

    /**
     * Returns the current thread's "initial value" for this
     * thread-local variable.  This method will be invoked the first
     * time a thread accesses the variable with the {@link #get}
     * method, unless the thread previously invoked the {@link #set}
     * method, in which case the <tt>initialValue</tt> method will not
     * be invoked for the thread.  Normally, this method is invoked at
     * most once per thread, but it may be invoked again in case of
     * subsequent invocations of {@link #remove} followed by {@link #get}.
     *
     * <p>This implementation simply returns <tt>null</tt>; if the
     * programmer desires thread-local variables to have an initial
     * value other than <tt>null</tt>, <tt>ThreadLocal</tt> must be
     * subclassed, and this method overridden.  Typically, an
     * anonymous inner class will be used.
     *
     * @return the initial value for this thread-local
     */
    protected T initialValue() {
        return null;
    }

    /**
     * Creates a thread local variable.
     */
    public ThreadLocal() {
    }

    /**
     * Returns the value in the current thread's copy of this
     * thread-local variable.  If the variable has no value for the
     * current thread, it is first initialized to the value returned
     * by an invocation of the {@link #initialValue} method.
     *
     * @return the current thread's value of this thread-local
     */
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null)
                return (T)e.value;
        }
        return setInitialValue();
    }

    /**
     * Variant of set() to establish initialValue. Used instead
     * of set() in case user has overridden the set() method.
     *
     * @return the initial value
     */
    private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }

    /**
     * Sets the current thread's copy of this thread-local variable
     * to the specified value.  Most subclasses will have no need to
     * override this method, relying solely on the {@link #initialValue}
     * method to set the values of thread-locals.
     *
     * @param value the value to be stored in the current thread's copy of
     *        this thread-local.
     */
    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

    /**
     * Removes the current thread's value for this thread-local
     * variable.  If this thread-local variable is subsequently
     * {@linkplain #get read} by the current thread, its value will be
     * reinitialized by invoking its {@link #initialValue} method,
     * unless its value is {@linkplain #set set} by the current thread
     * in the interim.  This may result in multiple invocations of the
     * <tt>initialValue</tt> method in the current thread.
     *
     * @since 1.5
     */
     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }

    /**
     * Get the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param  t the current thread
     * @return the map
     */
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

    /**
     * Create the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param t the current thread
     * @param firstValue value for the initial entry of the map
     * @param map the map to store.
     */
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }

    /**
     * Factory method to create map of inherited thread locals.
     * Designed to be called only from Thread constructor.
     *
     * @param  parentMap the map associated with parent thread
     * @return a map containing the parent's inheritable bindings
     */
    static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
        return new ThreadLocalMap(parentMap);
    }

    /**
     * Method childValue is visibly defined in subclass
     * InheritableThreadLocal, but is internally defined here for the
     * sake of providing createInheritedMap factory method without
     * needing to subclass the map class in InheritableThreadLocal.
     * This technique is preferable to the alternative of embedding
     * instanceof tests in methods.
     */
    T childValue(T parentValue) {
        throw new UnsupportedOperationException();
    }

    /**
     * ThreadLocalMap is a customized hash map suitable only for
     * maintaining thread local values. No operations are exported
     * outside of the ThreadLocal class. The class is package private to
     * allow declaration of fields in class Thread.  To help deal with
     * very large and long-lived usages, the hash table entries use
     * WeakReferences for keys. However, since reference queues are not
     * used, stale entries are guaranteed to be removed only when
     * the table starts running out of space.
     */
    static class ThreadLocalMap {

        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal k, Object v) {
                super(k);
                value = v;
            }
        }

        /**
         * The initial capacity -- MUST be a power of two.
         */
        private static final int INITIAL_CAPACITY = 16;

        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */
        private Entry[] table;

        /**
         * The number of entries in the table.
         */
        private int size = 0;

        /**
         * The next size value at which to resize.
         */
        private int threshold; // Default to 0

        /**
         * Set the resize threshold to maintain at worst a 2/3 load factor.
         */
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

        /**
         * Increment i modulo len.
         */
        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }

        /**
         * Decrement i modulo len.
         */
        private static int prevIndex(int i, int len) {
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }

        /**
         * Construct a new map initially containing (firstKey, firstValue).
         * ThreadLocalMaps are constructed lazily, so we only create
         * one when we have at least one entry to put in it.
         */
        ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

        /**
         * Construct a new map including all Inheritable ThreadLocals
         * from given parent map. Called only by createInheritedMap.
         *
         * @param parentMap the map associated with parent thread.
         */
        private ThreadLocalMap(ThreadLocalMap parentMap) {
            Entry[] parentTable = parentMap.table;
            int len = parentTable.length;
            setThreshold(len);
            table = new Entry[len];

            for (int j = 0; j < len; j++) {
                Entry e = parentTable[j];
                if (e != null) {
                    ThreadLocal key = e.get();
                    if (key != null) {
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    }
                }
            }
        }

        /**
         * Get the entry associated with key.  This method
         * itself handles only the fast path: a direct hit of existing
         * key. It otherwise relays to getEntryAfterMiss.  This is
         * designed to maximize performance for direct hits, in part
         * by making this method readily inlinable.
         *
         * @param  key the thread local object
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntry(ThreadLocal key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }

        /**
         * Version of getEntry method for use when key is not found in
         * its direct hash slot.
         *
         * @param  key the thread local object
         * @param  i the table index for key's hash code
         * @param  e the entry at table[i]
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

        /**
         * Set the value associated with key.
         *
         * @param key the thread local object
         * @param value the value to be set
         */
        private void set(ThreadLocal key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

        /**
         * Remove the entry for key.
         */
        private void remove(ThreadLocal key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                }
            }
        }

        /**
         * Replace a stale entry encountered during a set operation
         * with an entry for the specified key.  The value passed in
         * the value parameter is stored in the entry, whether or not
         * an entry already exists for the specified key.
         *
         * As a side effect, this method expunges all stale entries in the
         * "run" containing the stale entry.  (A run is a sequence of entries
         * between two null slots.)
         *
         * @param  key the key
         * @param  value the value to be associated with key
         * @param  staleSlot index of the first stale entry encountered while
         *         searching for key.
         */
        private void replaceStaleEntry(ThreadLocal key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            // Back up to check for prior stale entry in current run.
            // We clean out whole runs at a time to avoid continual
            // incremental rehashing due to garbage collector freeing
            // up refs in bunches (i.e., whenever the collector runs).
            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            // Find either the key or trailing null slot of run, whichever
            // occurs first
            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();

                // If we find key, then we need to swap it
                // with the stale entry to maintain hash table order.
                // The newly stale slot, or any other stale slot
                // encountered above it, can then be sent to expungeStaleEntry
                // to remove or rehash all of the other entries in run.
                if (k == key) {
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    // Start expunge at preceding stale entry if it exists
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                }

                // If we didn't find stale entry on backward scan, the
                // first stale entry seen while scanning for key is the
                // first still present in the run.
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }

            // If key not found, put new entry in stale slot
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);

            // If there are any other stale entries in run, expunge them
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }

        /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

        /**
         * Heuristically scan some cells looking for stale entries.
         * This is invoked when either a new element is added, or
         * another stale one has been expunged. It performs a
         * logarithmic number of scans, as a balance between no
         * scanning (fast but retains garbage) and a number of scans
         * proportional to number of elements, that would find all
         * garbage but would cause some insertions to take O(n) time.
         *
         * @param i a position known NOT to hold a stale entry. The
         * scan starts at the element after i.
         *
         * @param n scan control: <tt>log2(n)</tt> cells are scanned,
         * unless a stale entry is found, in which case
         * <tt>log2(table.length)-1</tt> additional cells are scanned.
         * When called from insertions, this parameter is the number
         * of elements, but when from replaceStaleEntry, it is the
         * table length. (Note: all this could be changed to be either
         * more or less aggressive by weighting n instead of just
         * using straight log n. But this version is simple, fast, and
         * seems to work well.)
         *
         * @return true if any stale entries have been removed.
         */
        private boolean cleanSomeSlots(int i, int n) {
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) {
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);
                }
            } while ( (n >>>= 1) != 0);
            return removed;
        }

        /**
         * Re-pack and/or re-size the table. First scan the entire
         * table removing stale entries. If this doesn't sufficiently
         * shrink the size of the table, double the table size.
         */
        private void rehash() {
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();
        }

        /**
         * Double the capacity of the table.
         */
        private void resize() {
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (int j = 0; j < oldLen; ++j) {
                Entry e = oldTab[j];
                if (e != null) {
                    ThreadLocal k = e.get();
                    if (k == null) {
                        e.value = null; // Help the GC
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }

        /**
         * Expunge all stale entries in the table.
         */
        private void expungeStaleEntries() {
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) {
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            }
        }
    }
}

image.png