BZOJ2956: 模積和(數論分塊)
阿新 • • 發佈:2019-02-07
signed fine com cal std long ace -m rst
題意
題目鏈接
Sol
啊啊這題好惡心啊,推的時候一堆細節qwq
\(a \% i = a - \frac{a}{i} * i\)
把所有的都展開,直接分塊。關鍵是那個\(i \not= j\)的地方需要減。。。。
然後就慢慢寫就好了
#include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define int long long #define LL long long #define Fin(x) {freopen(#x".in","r",stdin);} #define Fout(x) {freopen(#x".out","w",stdout);} using namespace std; const int MAXN = 1e6 + 10, mod = 19940417, INF = 1e9 + 10; const double eps = 1e-9; template <typename A, typename B> inline LL add(A x, B y) { if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y; } template <typename A, typename B> inline void add2(A &x, B y) { if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y); } template <typename A, typename B> inline LL mul(A x, B y) { x = (x + mod) % mod; y = (y + mod) % mod; return 1ll * x * y % mod; } template <typename A> inline LL sqr(A x) { return 1ll * x * x; } int N, M, a, b; int sum(int l, int r) { if(l == r) return l; int n = r - l + 1; if(n & 1) return add(mul(l, n), mul(n, (n - 1) / 2)); else return add(mul(l, n), mul(n / 2, n - 1)); } int calc(int n) { int ret = 0; for(int i = 1, j; i <= n; i = j + 1) { j = n / (n / i); add2(ret, mul(n / j, sum(i, j))); } return ret; } int get(int x) { int a = x, b = 2 * x + 1, c = x + 1; if(a % 2 == 0) a /= 2; else if(b % 2 == 0) b /= 2; else if(c % 2 == 0) c /= 2; if(a % 3 == 0) a /= 3; else if(b % 3 == 0) b /= 3; else if(c % 3 == 0) c /= 3; return mul(mul(a, b), c); } int fuck2(int i, int j) {//sum k^2 return add(get(j), -get(i - 1)); } int calc2() { int ret = 0; for(int i = 1, j; i <= N; i = j + 1) { j = min(M / (M / i), N / (N / i)); int a = M / i, b = N / i; add2(ret, add(add(mul(N, mul(a, sum(i, j))), mul(M, mul(b, sum(i, j)))), -mul(mul(a, b), fuck2(i, j)))); } return ret; } signed main() { cin >> N >> M; if(N > M) swap(N, M); a = calc(N); b = calc(M); int ans = mul(add(mul(N, N), -a), add(mul(M, M), -b)); add2(ans, -mul(N, mul(N, M))); add2(ans, calc2()); cout << ans; return 0; }
BZOJ2956: 模積和(數論分塊)