1. 程式人生 > >在直播應用中新增Faceu效果

在直播應用中新增Faceu效果

在我寫的上篇文章 中,介紹了美顏濾鏡的實現原理,已經能夠體會到GPUImage 的強大。本文將要介紹的Faceu貼紙效果也是基於GPUImage實現的,demo我放在了GitHub上。

1.核心原理

       Faceu貼紙效果其實就是在人臉上貼一些圖片,同時這些圖片是跟隨著人臉的位置改變的。如果我們不強調貼圖的位置,這就是一個簡單的水印需求。


Faceu原理.png

       根據人臉檢測的結果動態調整水印貼紙的位置即可實現簡單的Faceu效果。

2.水印

       在GPUImage的官方demo中就已經有文字水印的實現:

            GPUImageFilter
*filter = [[GPUImageFilter alloc] init]; [self.videoCamera addTarget:filter]; GPUImageAlphaBlendFilter *blendFilter = [[GPUImageAlphaBlendFilter alloc] init]; blendFilter.mix = 1.0; NSDate *startTime = [NSDate date]; UIView *temp = [[UIView
alloc] initWithFrame:self.view.frame]; UILabel *timeLabel = [[UILabel alloc] initWithFrame:CGRectMake(0.0, 0.0, 240.0f, 40.0f)]; timeLabel.font = [UIFont systemFontOfSize:17.0f]; timeLabel.text = @"Time: 0.0 s"; timeLabel.textAlignment = UITextAlignmentCenter; timeLabel.backgroundColor
= [UIColor clearColor]; timeLabel.textColor = [UIColor whiteColor]; [temp addSubview:timeLabel]; uiElementInput = [[GPUImageUIElement alloc] initWithView:temp]; [filter addTarget:blendFilter]; [uiElementInput addTarget:blendFilter]; [blendFilter addTarget:filterView]; __unsafe_unretained GPUImageUIElement *weakUIElementInput = uiElementInput; [filter setFrameProcessingCompletionBlock:^(GPUImageOutput * filter, CMTime frameTime){ timeLabel.text = [NSString stringWithFormat:@"Time: %f s", -[startTime timeIntervalSinceNow]]; [weakUIElementInput update]; }];

       要理解它的實現原理,需要搞懂GPUImageUIElement和GPUImageAlphaBlendFilter。GPUImageUIElement的作用是把一個檢視的layer通過CALayer的renderInContext:方法把layer轉化為image,然後作為OpenGL的紋理傳給GPUImageAlphaBlendFilter。而GPUImageAlphaBlendFilter則是一個兩輸入的blend filter, 它的第一個輸入是攝像頭資料,第二個輸入則是剛剛提到的GPUImageUIElement的資料,GPUImageAlphaBlendFilter將這兩個輸入做alpha blend,可以簡單的理解為將第二個輸入疊加到第一個的上面,更多關於alpha blend在維基百科上有介紹。下圖是整個加水印的過程:


水印.png

3.人臉檢測

       利用CIDetector即可簡單的實現人臉檢測,首先是CIDetector的初始化:

        NSDictionary *detectorOptions = [[NSDictionary alloc] initWithObjectsAndKeys:CIDetectorAccuracyLow, CIDetectorAccuracy, nil];
        _faceDetector = [CIDetector detectorOfType:CIDetectorTypeFace context:nil options:detectorOptions];

       然後通過將攝像頭資料CMSampleBufferRef轉化為CIImage,對CIImage用CIDetector進行人臉檢測:

    CVPixelBufferRef pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer);
    CFDictionaryRef attachments = CMCopyDictionaryOfAttachments(kCFAllocatorDefault, sampleBuffer, kCMAttachmentMode_ShouldPropagate);
    CIImage *convertedImage = [[CIImage alloc] initWithCVPixelBuffer:pixelBuffer options:(__bridge NSDictionary *)attachments];
    NSArray *features = [self.faceDetector featuresInImage:convertedImage options:imageOptions];

       上面得到的features數組裡的每個元素都是CIFaceFeature物件,根據它就能計算出人臉的具體位置,從而調整中水印影象的位置,達到影象跟隨人臉動的效果。

        for ( CIFaceFeature *faceFeature in featureArray) {
            // find the correct position for the square layer within the previewLayer
            // the feature box originates in the bottom left of the video frame.
            // (Bottom right if mirroring is turned on)
            //Update face bounds for iOS Coordinate System
            CGRect faceRect = [faceFeature bounds];

            // flip preview width and height
            CGFloat temp = faceRect.size.width;
            faceRect.size.width = faceRect.size.height;
            faceRect.size.height = temp;
            temp = faceRect.origin.x;
            faceRect.origin.x = faceRect.origin.y;
            faceRect.origin.y = temp;
            // scale coordinates so they fit in the preview box, which may be scaled
            CGFloat widthScaleBy = previewBox.size.width / clap.size.height;
            CGFloat heightScaleBy = previewBox.size.height / clap.size.width;
            faceRect.size.width *= widthScaleBy;
            faceRect.size.height *= heightScaleBy;
            faceRect.origin.x *= widthScaleBy;
            faceRect.origin.y *= heightScaleBy;

            faceRect = CGRectOffset(faceRect, previewBox.origin.x, previewBox.origin.y);

            //mirror
            CGRect rect = CGRectMake(previewBox.size.width - faceRect.origin.x - faceRect.size.width, faceRect.origin.y, faceRect.size.width, faceRect.size.height);
            if (fabs(rect.origin.x - self.faceBounds.origin.x) > 5.0) {
                self.faceBounds = rect;
            }
        }

       上面則是計算人臉位置faceBounds的方法,我們再根據faceBounds來更新水印影象的位置:

    __weak typeof (self) weakSelf = self;
    [filter setFrameProcessingCompletionBlock:^(GPUImageOutput *output, CMTime time) {
        __strong typeof (self) strongSelf = weakSelf;
        // update capImageView's frame
        CGRect rect = strongSelf.faceBounds;
        CGSize size = strongSelf.capImageView.frame.size;
        strongSelf.capImageView.frame = CGRectMake(rect.origin.x +  (rect.size.width - size.width)/2, rect.origin.y - size.height, size.width, size.height);
        [strongSelf.element update];
    }];

4.延伸

  • 問題1:上面用的人臉檢測是基於CIDetector的,實際實驗發現,當人臉在攝像頭中捕獲不全時,有可能檢測不出人臉,也就沒法更新水印影象的位置。因此,更加精準、快速、細緻的人臉檢測是很有必要的,後面我會嘗試使用一些其他的人臉檢測方法。
  • 問題2:上面的Faceu貼紙效果是靜態影象的貼紙效果,如果要做動態效果的Faceu貼紙該怎麼處理呢, Gif? CADisplayLink? 這個有待進一步研究,如果有這方面經驗的朋友也歡迎在評論區留言,互相交流學習。