python學習筆記之生成器
首先為什麼要有生成器?
通過列表生成式,我們可以直接建立一個列表。但是,受到記憶體限制,列表容量肯定是有限的。而且,建立一個包含100萬個元素的列表,不僅佔用很大的儲存空間,如果我們僅僅需要訪問前面幾個元素,那後面絕大多數元素佔用的空間都白白浪費了。
所以,如果列表元素可以按照某種演算法推算出來,那我們是否可以在迴圈的過程中不斷推算出後續的元素呢?這樣就不必建立完整的list,從而節省大量的空間。在Python中,這種一邊迴圈一邊計算的機制,稱為生成器:generator。
這就是為什麼要有生成器的原因。
要建立一個generator,有很多種方法。第一種方法很簡單,只要把一個列表生成式的[]改成(),就建立了一個generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
建立L和g的區別僅在於最外層的[]和(),L是一個list,而g是一個generator。
我們可以直接打印出list的每一個元素,但我們怎麼打印出generator的每一個元素呢?
如果要一個一個打印出來,可以通過next()函式獲得generator的下一個返回值。
generator儲存的是演算法,每次呼叫next(g),就計算出g的下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,丟擲StopIteration的錯誤。
更好的方法是使用for迴圈,因為generator也是可迭代物件:
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
所以,我們建立了一個generator後,基本上永遠不會呼叫next(),而是通過for迴圈來迭代它,並且不需要關心StopIteration的錯誤。
generator非常強大。如果推算的演算法比較複雜,用類似列表生成式的for迴圈無法實現的時候,還可以用函式來實現。
比如,著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數都可由前兩個數相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
斐波拉契數列用列表生成式寫不出來,但是,用函式把它打印出來卻很容易:
def fib(max):
n,a,b=0,0,1
while n<max:
print(b)
a,b=b,a+b
n+=1
return 'done'
上面的函式可以輸出斐波那契數列的前N個數:
>>> fib(6)
1
1
2
3
5
8
'done'
仔細觀察,可以看出,fib函式實際上是定義了斐波拉契數列的推算規則,可以從第一個元素開始,推算出後續任意的元素,這種邏輯其實非常類似generator。
也就是說,上面的函式和generator僅一步之遙。要把fib函式變成generator,只需要把print(b)改為yield b就可以了:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
這就是定義generator的另一種方法。如果一個函式定義中包含yield關鍵字,那麼這個函式就不再是一個普通函式,而是一個generator:
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>
這裡,最難理解的就是generator和函式的執行流程不一樣。函式是順序執行,遇到return語句或者最後一行函式語句就返回。而變成generator的函式,在每次呼叫next()的時候執行,遇到yield語句返回,再次執行時從上次返回的yield語句處繼續執行。
舉個簡單的例子,定義一個generator,依次返回數字1,3,5:
def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)
呼叫該generator時,首先要生成一個generator物件,然後用next()函式不斷獲得下一個返回值:
>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
可以看到,odd不是普通函式,而是generator,在執行過程中,遇到yield就中斷,下次又繼續執行。執行3次yield後,已經沒有yield可以執行了,所以,第4次呼叫next(o)就報錯。
回到fib的例子,我們在迴圈過程中不斷呼叫yield,就會不斷中斷。當然要給迴圈設定一個條件來退出迴圈,不然就會產生一個無限數列出來。
同樣的,把函式改成generator後,我們基本上從來不會用next()來獲取下一個返回值,而是直接使用for迴圈來迭代:
>>> for n in fib(6):
... print(n)
...
1
1
2
3
5
8
但是用for迴圈呼叫generator時,發現拿不到generator的return語句的返回值。如果想要拿到返回值,必須捕獲StopIteration錯誤,返回值包含在StopIteration的value中:
>>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done