1. 程式人生 > >人臉屬性分析--性別、年齡和表情識別

人臉屬性分析--性別、年齡和表情識別

人臉屬性指的是根據給定的人臉判斷其性別、年齡和表情等,當前在github上開源了一些相關的工作,大部分都是基於tensorflow的,還有一部分是keras,CVPR2015曾有一篇是用caffe做的.

CSDN

github

https://github.com/ZZUTK/Face-Aging-CAAE:CVPR2017 Age Progression/Regression by Conditional Adversarial Autoencoder 

useless

資料庫

UTKFace:over 20,000 face images with annotations of age, gender, and ethnicity. The images cover large variation in pose, facial expression, illumination, occlusion, resolution, etc. 

SCUT-FBP5500:5500 frontal faces with diverse properties (male/female, Asian/Caucasian, ages) and diverse labels (facial landmarks, beauty scores in 5 scales, beauty score distribution), which allows different computational model with different facial beauty prediction paradigms, such as appearance-based/shape-based facial beauty classification/regression/ranking model for male/female of Asian/Caucasian

  • 202,599 number of face images, and

  • 5 landmark locations40 binary attributes annotations per image.

APPA-REAL :視覺年齡估計,7,591張帶有實際年齡和視覺年齡標註的圖片,分為 4113 train, 1500 valid and 1978 test images,大小:844M

AFAD Dataset:  Asian Face Age Dataset,more than 160K facial images and the corresponding age and gender labels.暫未開放下載

FER+ :微軟重新標註的fer2013,表情識別比賽資料

NKI:GENKI資料集是由加利福尼亞大學的機器概念實驗室收集。該資料集包含GENKI-R2009a,GENKI-4K,GENKI-SZSL三個部分。GENKI-R2009a包含11159個影象,GENKI-4K包含4000個影象,分為“笑”和“不笑”兩種,每個圖片的人臉的尺度大小,姿勢,光照變化,頭的轉動等都不一樣,專門用於做笑臉識別。GENKI-SZSL包含3500個影象,這些影象包括廣泛的背景,光照條件,地理位置,個人身份和種族等

Datasets Description Links Key features Publish Time
CelebA 10,177 number of identities, 202,599 number of face images, and 5 landmark locations, 40 binary attributes annotations per image. attribute & landmark 2015
IMDB-WIKI 500k+ face images with age and gender labels age & gender 2015
Adience Unfiltered faces for gender and age classification age & gender 2014
WFLW