基於Spark streaming的SQL服務實時自動化運維
阿新 • • 發佈:2019-02-10
設計背景
spark thriftserver目前線上有10個例項,以往通過監控埠存活的方式很不準確,當出故障時程序不退出情況很多,而手動去檢視日誌再重啟處理服務這個過程很低效,故設計利用Spark streaming去實時獲取spark thriftserver的log,通過log判斷服務是否停止服務,從而進行對應的自動重啟處理,該方案能達到秒級 7 * 24h不間斷監控及維護服務。
設計架構
- 在需要檢測的spark thriftserver服務節點上部署flume agent來監控日誌流 (flume使用interceptor給日誌加host資訊)
- flume收集的日誌流打入kafka
- spark streaming接收kafka的日誌流,根據自定義關鍵詞檢測日誌內容,如果命中關鍵字則認為服務不可用,把該日誌對應的host資訊打入mysql
- 寫一個shell指令碼從mysql讀取host資訊,執行重啟服務操作
軟體版本及配置
spark 2.0.1, kafka 0.10, flume 1.7
1)flume配置及命令:
修改flume-conf.properties
agent.sources = sparkTS070
agent.channels = c
agent.sinks = kafkaSink
# For each one of the sources, the type is defined
agent.sources.sparkTS070.type = TAILDIR
agent.sources.sparkTS070.interceptors = i1
agent.sources.sparkTS070.interceptors.i1.type = host
agent.sources.sparkTS070.interceptors.i1.useIP = false
agent.sources.sparkTS070.interceptors.i1.hostHeader = agentHost
# The channel can be defined as follows.
agent.sources .sparkTS070.channels = c
agent.sources.sparkTS070.positionFile = /home/hadoop/xu.wenchun/apache-flume-1.7.0-bin/taildir_position.json
agent.sources.sparkTS070.filegroups = f1
agent.sources.sparkTS070.filegroups.f1 = /data1/spark/logs/spark-hadoop-org.apache.spark.sql.hive.thriftserver.HiveThriftServer2-1-hadoop070.dx.com.out
# Each sink's type must be defined
agent.sinks.kafkaSink.type = org.apache.flume.sink.kafka.KafkaSink
agent.sinks.kafkaSink.kafka.topic = mytest-topic1
agent.sinks.kafkaSink.kafka.bootstrap.servers = 10.87.202.51:9092
agent.sinks.kafkaSink.useFlumeEventFormat = true
#Specify the channel the sink should use
agent.sinks.kafkaSink.channel = c
# Each channel's type is defined.
agent.channels.c.type = memory
執行命令:
nohup bin/flume-ng agent -n agent -c conf -f conf/flume-conf.properties -Dflume.root.logger=INFO,LOGFILE &
2)kafka配置及執行命令:
修改config/server.properties
broker.id=1
listeners=PLAINTEXT://10.87.202.51:9092
log.dirs=/home/hadoop/xu.wenchun/kafka_2.11-0.10.0.1/kafka.log
zookeeper.connect=10.87.202.44:2181,10.87.202.51:2181,10.87.202.52:2181
執行命令
nohup bin/kafka-server-start.sh config/server.properties &
spark streaming執行命令 :
/opt/spark-2.0.1-bin-2.6.0/bin/spark-submit --master yarn-cluster --num-executors 3 --class SparkTSLogMonitor /tmp/mavenSparkProject.jar 10.87.202.51:9092 mytest-topic1
3)shell指令碼
寫一個shell指令碼從mysql讀取host資訊,執行重啟服務操作
spark streaming監控job的核心程式碼
這類分享spark streaming程式碼,以下程式碼經過一些坑摸索出來驗證可用。
stream.foreachRDD { rdd =>
rdd.foreachPartition { rddOfPartition =>
val conn = ConnectPool.getConnection
println(" conn:" + conn)
conn.setAutoCommit(false) //設為手動提交
val stmt = conn.createStatement()
rddOfPartition.foreach { event =>
val body = event.value().get()
val decoder = DecoderFactory.get().binaryDecoder(body, null)
val result = new SpecificDatumReader[AvroFlumeEvent](classOf[AvroFlumeEvent]).read(null, decoder)
val hostname = result.getHeaders.get(new Utf8("agentHost"))
val text = new String(result.getBody.array())
if (text.contains("Broken pipe") || text.contains("No active SparkContext")) {
val dateFormat:SimpleDateFormat = new SimpleDateFormat("yyyyMMddhhmmssSSS")
val id = dateFormat.format(new Date()) + "_" + (new util.Random).nextInt(999)
stmt.addBatch("insert into monitor(id,hostname) values ('" + id + "','" + hostname + "')")
println("insert into monitor(id,hostname) values ('" + id + "','" + hostname + "')")
}
}
stmt.executeBatch()
conn.commit()
conn.close()
}
}
沒有監控的特例情況:服務jvm老年代滿了,日誌不打出來,在yarn上的註冊服務掛掉。
在kafka所在機器執行命令查offset情況
- bin/kafka-run-class.sh kafka.tools.ConsumerOffsetChecker –zookeeper localhost:2181 –group myspark –topic mytest-topic1 (ZooKeeper-based consumers)
- bin/kafka-consumer-groups.sh –bootstrap-server localhost:9092 –describe –group myspark (non-ZooKeeper-based consumers)
(完)
以上是一個實時處理的典型入門應用,我個人工作中剛好遇到這類監控運維問題,於是採用該方案進行處理,效果不錯。