【LG4103】[HEOI2014]大工程
阿新 • • 發佈:2019-02-11
rap ret span n) ns3 clas \n mat getchar()
【LG4103】[HEOI2014]大工程
題面
洛谷
題解
先建虛樹,下面所有討論均是在虛樹上的。
對於第一問:直接統計所有樹邊對答案的貢獻即可。
對於第\(2,3\)問:記\(f[x]\)表示在\(x\)的子樹內離\(x\)距離最遠的關鍵點的距離,\(g[x]\)表示在\(x\)的子樹內離\(x\)距離最近的關鍵點的距離。
具體更新以\(f[x]\)為例:
訪問到\(v\in son_x\),
如果以前訪問過的點中有關鍵點,則有\(f[x]=max(f[x],f[v]+dis(u,v)+f[x])\),
每次還要向上傳遞,即\(f[x]=max(f[x],f[v]+dis(u,v))\)。
代碼
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> using namespace std; inline int gi() { register int data = 0, w = 1; register char ch = 0; while (!isdigit(ch) && ch != '-') ch = getchar(); if (ch == '-') w = -1, ch = getchar(); while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); return w * data; } const int MAX_N = 1e6 + 5; struct Graph { int to, next; } e[MAX_N << 2]; int fir1[MAX_N], fir2[MAX_N], e_cnt; void clearGraph() { memset(fir1, -1, sizeof(fir1)); memset(fir2, -1, sizeof(fir2)); } void Add_Edge(int *fir, int u, int v) { e[e_cnt] = (Graph){v, fir[u]}; fir[u] = e_cnt++; } namespace Tree { int fa[MAX_N], dep[MAX_N], size[MAX_N], top[MAX_N], son[MAX_N], dfn[MAX_N], tim; void dfs1(int x) { dfn[x] = ++tim; size[x] = 1, dep[x] = dep[fa[x]] + 1; for (int i = fir1[x]; ~i; i = e[i].next) { int v = e[i].to; if (v == fa[x]) continue; fa[v] = x; dfs1(v); size[x] += size[v]; if (size[v] > size[son[x]]) son[x] = v; } } void dfs2(int x, int tp) { top[x] = tp; if (son[x]) dfs2(son[x], tp); for (int i = fir1[x]; ~i; i = e[i].next) { int v = e[i].to; if (v == fa[x] || v == son[x]) continue; dfs2(v, v); } } int LCA(int x, int y) { while (top[x] != top[y]) { if (dep[top[x]] < dep[top[y]]) swap(x, y); x = fa[top[x]]; } return dep[x] < dep[y] ? x : y; } } using Tree::LCA; using Tree::dfn; using Tree::dep; int N, M, K, a[MAX_N]; bool key[MAX_N]; int f[MAX_N], g[MAX_N], s[MAX_N]; bool cmp(int i, int j) { return dfn[i] < dfn[j]; } void build() { static int stk[MAX_N], top; sort(&a[1], &a[K + 1], cmp); stk[top = 1] = 1; fir2[1] = -1; e_cnt = 0; for (int i = 1; i <= K; i++) { key[a[i]] = 1; if (a[i] == 1) continue; int lca = LCA(stk[top], a[i]); if (lca != stk[top]) { while (dfn[lca] < dfn[stk[top - 1]]) { int u = stk[top], v = stk[top - 1]; Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); --top; } if (dfn[lca] > dfn[stk[top - 1]]) { fir2[lca] = -1; int u = stk[top], v = lca; Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); stk[top] = lca; } else { int u = lca, v = stk[top--]; Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); } } fir2[a[i]] = -1, stk[++top] = a[i]; } for (int i = 1; i < top; i++) { int u = stk[i], v = stk[i + 1]; Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); } } long long ans1; int ans2, ans3; void Dp(int x, int fa) { s[x] = key[x], f[x] = 0, g[x] = (key[x] ? 0 : 1e9); for (int i = fir2[x]; ~i; i = e[i].next) { int v = e[i].to; if (v == fa) continue; Dp(v, x); } for (int i = fir2[x]; ~i; i = e[i].next) { int v = e[i].to, w = dep[v] - dep[x]; if (v == fa) continue; ans1 += 1ll * (K - s[v]) * s[v] * w; if (s[x] > 0) { ans2 = min(ans2, g[x] + w + g[v]); ans3 = max(ans3, f[x] + w + f[v]); } g[x] = min(g[x], g[v] + w); f[x] = max(f[x], f[v] + w); s[x] += s[v]; } key[x] = 0; } int main () { #ifndef ONLINE_JUDGE freopen("cpp.in", "r", stdin); #endif clearGraph(); N = gi(); for (int i = 1; i < N; i++) { int u = gi(), v = gi(); Add_Edge(fir1, u, v), Add_Edge(fir1, v, u); } Tree::dfs1(1), Tree::dfs2(1, 1); M = gi(); while (M--) { ans1 = 0, ans2 = 1e9, ans3 = 0; K = gi(); for (int i = 1; i <= K; i++) a[i] = gi(); build(); Dp(1, 0); printf("%lld %d %d\n", ans1, ans2, ans3); } return 0; }
【LG4103】[HEOI2014]大工程