吳恩達機器學習記錄--linear regression概念
模型(監督學習例子) regression problem
m = 訓練樣本的數量
x = 輸入變量/特征
y = 輸出變量
(x(i),y(i)) 訓練集索引(第i行)
Hypothesis(假設函數)
Cost function (代價函數)/(誤差平方)
訓練誤差結果
代價函數的作用
3D表示
等高線表示
梯度下降
保持改變兩theta的值來減小J直到最小
特點:起點偏移一些,就會得到完全不同的最優解
Gradient descent algorithm
α:學習率
未完待續。。
吳恩達機器學習記錄--linear regression概念
相關推薦
吳恩達機器學習記錄--linear regression概念
algo 表示 訓練集 pro 例子 family 代價函數 spa 假設 模型(監督學習例子) regression problem m = 訓練樣本的數量 x = 輸入變量/特征 y = 輸出變量 (x(i),y(i)) 訓練集索引(第i行) Hypoth
吳恩達機器學習記錄--Matlab 一些基本操作
機器學習 比較 基本操作 邏輯 mat 取整 單位 long length 1.加減乘除2.真假 “== ~=”3.邏輯與 邏輯或 “&& ||”4.變量位數長短 format short/format long %0.2f (小數點後兩位
Coursera-吳恩達-機器學習-第六週-程式設計作業: Regularized Linear Regression and Bias/Variance
本次文章內容: Coursera吳恩達機器學習課程,第六週程式設計作業。程式語言是Matlab。 學習演算法分兩部分進行理解,第一部分是根據code對演算法進行綜述,第二部分是程式碼。 0 Introduction 在這個練習中,應用regularized linea
吳恩達機器學習筆記8-多變量線性回歸(Linear Regression with Multiple Variables)--多維特征
學習筆記 機器 增加 都是 維度 能夠 因此 表示 轉置 我們探討了單變量/特征的回歸模型,現在我們對房價模型增加更多的特征,例如房間數樓層等,構成一個含有多個變量的模型,模型中的特征為(??1, ??1, . . . , ????)。 增添更多特征後,我們引入一
吳恩達機器學習筆記21-正則化線性回歸(Regularized Linear Regression)
減少 ear 額外 利用 line pan 兩種 方程 res 對於線性回歸的求解,我們之前推導了兩種學習算法:一種基於梯度下降,一種基於正規方程。 正則化線性回歸的代價函數為: 如果我們要使用梯度下降法令這個代價函數最小化,因為我們未對theta0進行正則化,
吳恩達“機器學習”——學習筆記二
最大似然 數據 learning 模型 ima 我們 回歸 eps 而是 定義一些名詞 欠擬合(underfitting):數據中的某些成分未被捕獲到,比如擬合結果是二次函數,結果才只擬合出了一次函數。 過擬合(overfitting):使用過量的特征集合,使模型過於復雜。
吳恩達“機器學習”——學習筆記八
包含 找到 trade 經驗 這也 ... info 算法 不等式 偏差方差權衡(bias variance trade off) 偏差:如果說一個模型欠擬合,也可以說它的偏差很大。 方差:如果說一個模型過擬合,也可以說它的方差很大。 訓練誤差 經驗風險最小化(ERM)
【吳恩達機器學習】學習筆記——1.5無監督學習
分類 哪些 rep epm 朋友 工作 style class 客戶 1 無監督學習:在不知道數據點的含義的情況下,從一個數據集中找出數據點的結構關系。 2 聚類算法:相同屬性的數據點會集中分布,聚集在一起,聚類算法將數據集分成不同的聚類。也就是說,機器不知道這些數據點具體
【吳恩達機器學習】學習筆記——2.1單變量線性回歸算法
工作方式 樣本 body 聚類 屬性 bsp 定義 算法 信息 1 回顧1.1 監督學習定義:給定正確答案的機器學習算法分類:(1)回歸算法:預測連續值的輸出,如房價的預測(2)分類算法:離散值的輸出,如判斷患病是否為某種癌癥1.2 非監督學習定義:不給定數據的信息的情況下
【吳恩達機器學習】學習筆記——代價函數
info alt 學習 ima 代價函數 png 線性回歸 gpo mage 單變量線性回歸函數 hθ(x) = θ0 + θ1x 為了使線性回歸函數對數據有較好的預測性,即y到h(x)的距離都很小。 【吳恩達機器學習】學習筆記——代價函數
【吳恩達機器學習】學習筆記——梯度下降
得到 向導 bubuko gpo 思路 pos 方向導數 ... image 梯度下降算法能夠幫助我們快速得到代價函數的最小值 算法思路: 以某一參數為起始點 尋找下一個參數使得代價函數的值減小,直到得到局部最小值 梯度下降算法: 重復下式直至收斂,其中α為學習速
【吳恩達機器學習】學習筆記——2.7第一個學習算法=線性回歸+梯度下降
com 梯度 .com 局部最優 alt ima 實現 梯度下降 width 梯度下降算法: 線性回歸模型: 線性假設: 平方差成本函數: 將各個公式代入,對θ0、θ1分別求偏導得: 再將偏
Coursera-AndrewNg(吳恩達)機器學習筆記——第三周
訓練 ros 方便 font 就是 梯度下降 全局最優 用法 郵件 一.邏輯回歸問題(分類問題) 生活中存在著許多分類問題,如判斷郵件是否為垃圾郵件;判斷腫瘤是惡性還是良性等。機器學習中邏輯回歸便是解決分類問題的一種方法。二分類:通常表示為y?{0,1},0:“Negat
吳恩達機器學習第5周Neural Networks(Cost Function and Backpropagation)
and div bsp 關於 邏輯回歸 info src clas 分享 5.1 Cost Function 假設訓練樣本為:{(x1),y(1)),(x(2),y(2)),...(x(m),y(m))} L = total no.of layers in network
吳恩達機器學習筆記 —— 5 多變量線性回歸
擬合 進行 image 價格 常用 從表 cnblogs 優化 深度 本篇主要講的是多變量的線性回歸,從表達式的構建到矩陣的表示方法,再到損失函數和梯度下降求解方法,再到特征的縮放標準化,梯度下降的自動收斂和學習率調整,特征的常用構造方法、多維融合、高次項、平方根,最後基
吳恩達機器學習筆記 —— 9 神經網絡學習
滿了 線性回歸 復雜 amp 技術分享 tps 機器 神經網絡 前饋型神經網絡 本章講述了神經網絡的起源與神經元模型,並且描述了前饋型神經網絡的構造。 更多內容參考 機器學習&深度學習 在傳統的線性回歸或者邏輯回歸中,如果特征很多,想要手動組合很多有效的特征是不
吳恩達機器學習筆記(六) —— 支持向量機SVM
次數 括號 圖片 最小 我們 支持向量機svm UNC 意思 strong 主要內容: 一.損失函數 二.決策邊界 三.Kernel 四.使用SVM 一.損失函數 二.決策邊界 對於: 當C非常大時,括號括起來的部分就接近於0,所以就變成了:
吳恩達機器學習筆記 —— 17 推薦系統
htm 特征 問題 這就是 ref 圖片 系統 得出 工業 本章講述了推薦系統相關的知識,比如基於內容的推薦算法、基於協同過濾的推薦算法以及實踐中遇到的問題。 更多內容參考 機器學習&深度學習 推薦系統是機器學習在工業界應用最廣泛的方向,很多電子商務類、咨詢類的
吳恩達機器學習筆記 —— 12 機器學習系統設計
不知道 cor 算法 項目 詞語 樣本 我們 們的 ... http://www.cnblogs.com/xing901022/p/9362339.html 本章主要圍繞機器學習的推薦實踐過程以及評測指標,一方面告訴我們如何優化我們的模型;另一方面告訴我們對於分類的算法
吳恩達機器學習筆記 —— 14 無監督學習
www 最簡 業務 一次 曲線 logs img 下一個 com http://www.cnblogs.com/xing901022/p/9368432.html 本章講述的是第一個無監督的機器學習算法,在無監督的算法中,樣本數據只有特征向量,並沒有標註的y值。比如聚類