Android啟動過程分析——init.c(一)
阿新 • • 發佈:2019-02-11
《Android框架揭祕》這本書是基於Android2.2原始碼的,但是手頭上只有Android4.4的原始碼。這兩個版本的啟動過程基本一致,但是在具體的編碼上,還是有一些區別的,下面,對照著這本書,分析一下4.4的init程序。
分析從main開始
首先給出main函式的完整原始碼。
int main(int argc, char **argv)
{
int fd_count = 0;
struct pollfd ufds[4];
char *tmpdev;
char* debuggable;
char tmp[32];
int property_set_fd_init = 0 ;
int signal_fd_init = 0;
int keychord_fd_init = 0;
bool is_charger = false;
if (!strcmp(basename(argv[0]), "ueventd"))
return ueventd_main(argc, argv);
if (!strcmp(basename(argv[0]), "watchdogd"))
return watchdogd_main(argc, argv);
/* clear the umask */
umask(0 );
/* Get the basic filesystem setup we need put
* together in the initramdisk on / and then we'll
* let the rc file figure out the rest.
*/
mkdir("/dev", 0755);
mkdir("/proc", 0755);
mkdir("/sys", 0755);
mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755" );
mkdir("/dev/pts", 0755);
mkdir("/dev/socket", 0755);
mount("devpts", "/dev/pts", "devpts", 0, NULL);
mount("proc", "/proc", "proc", 0, NULL);
mount("sysfs", "/sys", "sysfs", 0, NULL);
/* indicate that booting is in progress to background fw loaders, etc */
close(open("/dev/.booting", O_WRONLY | O_CREAT, 0000));
/* We must have some place other than / to create the
* device nodes for kmsg and null, otherwise we won't
* be able to remount / read-only later on.
* Now that tmpfs is mounted on /dev, we can actually
* talk to the outside world.
*/
open_devnull_stdio();
klog_init();
property_init();
get_hardware_name(hardware, &revision);
process_kernel_cmdline();
union selinux_callback cb;
cb.func_log = klog_write;
selinux_set_callback(SELINUX_CB_LOG, cb);
cb.func_audit = audit_callback;
selinux_set_callback(SELINUX_CB_AUDIT, cb);
selinux_initialize();
/* These directories were necessarily created before initial policy load
* and therefore need their security context restored to the proper value.
* This must happen before /dev is populated by ueventd.
*/
restorecon("/dev");
restorecon("/dev/socket");
restorecon("/dev/__properties__");
restorecon_recursive("/sys");
is_charger = !strcmp(bootmode, "charger");
INFO("property init\n");
if (!is_charger)
property_load_boot_defaults();
INFO("reading config file\n");
init_parse_config_file("/init.rc");
action_for_each_trigger("early-init", action_add_queue_tail);
queue_builtin_action(wait_for_coldboot_done_action, "wait_for_coldboot_done");
queue_builtin_action(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
queue_builtin_action(keychord_init_action, "keychord_init");
queue_builtin_action(console_init_action, "console_init");
/* execute all the boot actions to get us started */
action_for_each_trigger("init", action_add_queue_tail);
/* skip mounting filesystems in charger mode */
if (!is_charger) {
action_for_each_trigger("early-fs", action_add_queue_tail);
action_for_each_trigger("fs", action_add_queue_tail);
action_for_each_trigger("post-fs", action_add_queue_tail);
action_for_each_trigger("post-fs-data", action_add_queue_tail);
}
/* Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
* wasn't ready immediately after wait_for_coldboot_done
*/
queue_builtin_action(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
queue_builtin_action(property_service_init_action, "property_service_init");
queue_builtin_action(signal_init_action, "signal_init");
queue_builtin_action(check_startup_action, "check_startup");
if (is_charger) {
action_for_each_trigger("charger", action_add_queue_tail);
} else {
action_for_each_trigger("early-boot", action_add_queue_tail);
action_for_each_trigger("boot", action_add_queue_tail);
}
/* run all property triggers based on current state of the properties */
queue_builtin_action(queue_property_triggers_action, "queue_property_triggers");
#if BOOTCHART
queue_builtin_action(bootchart_init_action, "bootchart_init");
#endif
for(;;) {
int nr, i, timeout = -1;
execute_one_command();
restart_processes();
if (!property_set_fd_init && get_property_set_fd() > 0) {
ufds[fd_count].fd = get_property_set_fd();
ufds[fd_count].events = POLLIN;
ufds[fd_count].revents = 0;
fd_count++;
property_set_fd_init = 1;
}
if (!signal_fd_init && get_signal_fd() > 0) {
ufds[fd_count].fd = get_signal_fd();
ufds[fd_count].events = POLLIN;
ufds[fd_count].revents = 0;
fd_count++;
signal_fd_init = 1;
}
if (!keychord_fd_init && get_keychord_fd() > 0) {
ufds[fd_count].fd = get_keychord_fd();
ufds[fd_count].events = POLLIN;
ufds[fd_count].revents = 0;
fd_count++;
keychord_fd_init = 1;
}
if (process_needs_restart) {
timeout = (process_needs_restart - gettime()) * 1000;
if (timeout < 0)
timeout = 0;
}
if (!action_queue_empty() || cur_action)
timeout = 0;
#if BOOTCHART
if (bootchart_count > 0) {
if (timeout < 0 || timeout > BOOTCHART_POLLING_MS)
timeout = BOOTCHART_POLLING_MS;
if (bootchart_step() < 0 || --bootchart_count == 0) {
bootchart_finish();
bootchart_count = 0;
}
}
#endif
nr = poll(ufds, fd_count, timeout);
if (nr <= 0)
continue;
for (i = 0; i < fd_count; i++) {
if (ufds[i].revents == POLLIN) {
if (ufds[i].fd == get_property_set_fd())
handle_property_set_fd();
else if (ufds[i].fd == get_keychord_fd())
handle_keychord();
else if (ufds[i].fd == get_signal_fd())
handle_signal();
}
}
}
return 0;
}
Part 1
// ==================================================
// Part 1
/* Get the basic filesystem setup we need put
* together in the initramdisk on / and then we'll
* let the rc file figure out the rest.
*/
mkdir("/dev", 0755);
mkdir("/proc", 0755);
mkdir("/sys", 0755);
mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755");
mkdir("/dev/pts", 0755);
mkdir("/dev/socket", 0755);
mount("devpts", "/dev/pts", "devpts", 0, NULL);
mount("proc", "/proc", "proc", 0, NULL);
mount("sysfs", "/sys", "sysfs", 0, NULL);
// ==================================================
這部分程式碼的目的在註釋裡很清楚:在記憶體中建立基本的檔案系統,以提供給init程序使用。其餘的檔案系統將在.rc檔案裡建立。
這裡引用一下《Android框架揭祕》對tmpfs、devpts、proc、sysfs這四種檔案系統的解釋:
- tmpfs是一種虛擬記憶體的檔案系統,典型的tmpfs檔案系統完全駐留在RAM中,讀寫速度遠快于山村或硬碟檔案系統。/dev目錄儲存著硬體裝置訪問所需要的裝置驅動程式。在Android中,將相關記錄用作tmpfs,可以大幅提升裝置訪問的速度。
- devpts是一種虛擬終端檔案系統。
- proc是一種虛擬檔案系統,只存在於記憶體中,而不佔用外存空間。藉助此檔案系統,應用程式可以與核心內部資料結構進行互動。
- sysfs是一種特殊的檔案系統,在Linux Kernel2.6中引入,用於將系統中的裝置組織成層次結構,並向用戶模式程式提供詳細的核心資料結構資訊,將proc、devfs、depts三種檔案系統統一起來。
Part 2
// ==================================================
// Part 2
/* We must have some place other than / to create the
* device nodes for kmsg and null, otherwise we won't
* be able to remount / read-only later on.
* Now that tmpfs is mounted on /dev, we can actually
* talk to the outside world.
*/
open_devnull_stdio();
klog_init();
// ==================================================
先來看一下open_devnull_stdio():
void open_devnull_stdio(void)
{
int fd;
static const char *name = "/dev/__null__";
if (mknod(name, S_IFCHR | 0600, (1 << 8) | 3) == 0) {
fd = open(name, O_RDWR);
unlink(name);
if (fd >= 0) {
dup2(fd, 0);
dup2(fd, 1);
dup2(fd, 2);
if (fd > 2) {
close(fd);
}
return;
}
}
exit(1);
}
該函式在/dev目錄下生成“null”裝置節點,並將標準輸入、標準輸出、標準錯誤輸出全部定向到該裝置節點中。
在Unix系統中,所有的輸入、輸出都被處理為檔案,標準輸入為0,標準輸出為1,標準錯誤輸出為2。
由於函式將與標準輸入輸出相關的檔案全部重定向,因此init程序通過標準的輸入輸出無法輸出資訊。所以就有了klog_init()函式。
void klog_init(void)
{
static const char *name = "/dev/__kmsg__";
if (klog_fd >= 0) return; /* Already initialized */
if (mknod(name, S_IFCHR | 0600, (1 << 8) | 11) == 0) {
klog_fd = open(name, O_WRONLY);
if (klog_fd < 0)
return;
fcntl(klog_fd, F_SETFD, FD_CLOEXEC);
unlink(name);
}
}
通過呼叫這個函式,生成“/dev/kmsg”裝置節點檔案。通過該節點,呼叫核心資訊輸出函式printk,init程序就可以輸出log了。
至於為什麼要做重定向,在註釋裡說的很清楚,是為了後面remount根目錄。
Part 3
// ==================================================
// Part 3
property_init();
get_hardware_name(hardware, &revision);
process_kernel_cmdline();
// ==================================================
property_init()函式的作用是初始化property系統。它的呼叫順序如下:
void property_init(void)
{
init_property_area();
}
static int init_property_area(void)
{
if (property_area_inited)
return -1;
if(__system_property_area_init())
return -1;
if(init_workspace(&pa_workspace, 0))
return -1;
fcntl(pa_workspace.fd, F_SETFD, FD_CLOEXEC);
property_area_inited = 1;
return 0;
}
static int init_workspace(workspace *w, size_t size)
{
void *data;
int fd = open(PROP_FILENAME, O_RDONLY | O_NOFOLLOW);
if (fd < 0)
return -1;
w->size = size;
w->fd = fd;
return 0;
}
define PROP_FILENAME "/dev/__properties__"
一路看下來,其實就是開啟一個裝置節點,並做一些初始化。
void get_hardware_name(char *hardware, unsigned int *revision)
{
char data[1024];
int fd, n;
char *x, *hw, *rev;
/* Hardware string was provided on kernel command line */
if (hardware[0])
return;
fd = open("/proc/cpuinfo", O_RDONLY);
if (fd < 0) return;
n = read(fd, data, 1023);
close(fd);
if (n < 0) return;
data[n] = 0;
hw = strstr(data, "\nHardware");
rev = strstr(data, "\nRevision");
if (hw) {
x = strstr(hw, ": ");
if (x) {
x += 2;
n = 0;
while (*x && *x != '\n') {
if (!isspace(*x))
hardware[n++] = tolower(*x);
x++;
if (n == 31) break;
}
hardware[n] = 0;
}
}
if (rev) {
x = strstr(rev, ": ");
if (x) {
*revision = strtoul(x + 2, 0, 16);
}
}
}
這個函式的作用就是從/proc/cpuinfo節點中讀取系統的硬體資訊。
static void process_kernel_cmdline(void)
{
/* don't expose the raw commandline to nonpriv processes */
chmod("/proc/cmdline", 0440);
/* first pass does the common stuff, and finds if we are in qemu.
* second pass is only necessary for qemu to export all kernel params
* as props.
*/
import_kernel_cmdline(0, import_kernel_nv);
if (qemu[0])
import_kernel_cmdline(1, import_kernel_nv);
/* now propogate the info given on command line to internal variables
* used by init as well as the current required properties
*/
export_kernel_boot_props();
}
static void export_kernel_boot_props(void)
{
char tmp[PROP_VALUE_MAX];
int ret;
unsigned i;
struct {
const char *src_prop;
const char *dest_prop;
const char *def_val;
} prop_map[] = {
{ "ro.boot.serialno", "ro.serialno", "", },
{ "ro.boot.mode", "ro.bootmode", "unknown", },
{ "ro.boot.baseband", "ro.baseband", "unknown", },
{ "ro.boot.bootloader", "ro.bootloader", "unknown", },
};
for (i = 0; i < ARRAY_SIZE(prop_map); i++) {
ret = property_get(prop_map[i].src_prop, tmp);
if (ret > 0)
property_set(prop_map[i].dest_prop, tmp);
else
property_set(prop_map[i].dest_prop, prop_map[i].def_val);
}
ret = property_get("ro.boot.console", tmp);
if (ret)
strlcpy(console, tmp, sizeof(console));
/* save a copy for init's usage during boot */
property_get("ro.bootmode", tmp);
strlcpy(bootmode, tmp, sizeof(bootmode));
/* if this was given on kernel command line, override what we read
* before (e.g. from /proc/cpuinfo), if anything */
ret = property_get("ro.boot.hardware", tmp);
if (ret)
strlcpy(hardware, tmp, sizeof(hardware));
property_set("ro.hardware", hardware);
snprintf(tmp, PROP_VALUE_MAX, "%d", revision);
property_set("ro.revision", tmp);
/* TODO: these are obsolete. We should delete them */
if (!strcmp(bootmode,"factory"))
property_set("ro.factorytest", "1");
else if (!strcmp(bootmode,"factory2"))
property_set("ro.factorytest", "2");
else
property_set("ro.factorytest", "0");
}
這個函式的作用就是從kernel讀取一些環境變數並寫到屬性系統中。