1. 程式人生 > >ImageNet Classification with Deep Convolutional neural Networks

ImageNet Classification with Deep Convolutional neural Networks

參考文獻:

[1] R.M. Bell and Y. Koren. Lessons from the netflix prizechallenge. ACM SIGKDD Explorations Newsletter,9(2):75–79, 2007.

[2] A. Berg, J. Deng, and L. Fei-Fei. Large scale visualrecognition challenge 2010. www.imagenet.org/challenges. 2010.

[3] L. Breiman. Random forests. Machine learning,45(1):5–32, 2001.

[4] D. Cire¸san, U. Meier, and J. Schmidhuber. Multi-columndeep neural networks for image classification.Arxiv preprint arXiv:1202.2745,2012.

[5] D.C. Cire¸san, U. Meier, J. Masci, L.M. Gambardella, andJ. Schmidhuber. High-performance neural networks for visual objectclassification. Arxiv preprint arXiv:1102.0183, 2011.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L.Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[7] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L.Fei-Fei. ILSVRC-2012, 2012.

[8] L. Fei-Fei, R. Fergus, and P. Perona. Learninggenerative visual models from few training examples: An incremental bayesianapproach tested on 101 object categories. Computer Vision and Image Understanding,106(1):59–70,2007.

[9] G. Griffin, A. Holub, and P. Perona. Caltech-256 objectcategory dataset. Technical Report 7694, California Institute of Technology,2007. URL http://authors.library.caltech.edu/7694.

[10] G.E. Hinton, N. Srivastava, A. Krizhevsky, I.Sutskever, and R.R. Salakhutdinov. Improving neural networks by preventingco-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[11] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y.LeCun. What is the best multi-stage architecture for object recognition? InInternational Conference on Computer Vision, pages 2146–2153. IEEE, 2009.

[12] A. Krizhevsky. Learning multiple layers of featuresfrom tiny images. Master’s thesis, Department of Computer Science, Universityof Toronto, 2009.

[13] A. Krizhevsky. Convolutional deep belief networks oncifar-10. Unpublished manuscript, 2010.

[14] A. Krizhevsky and G.E. Hinton. Using very deepautoencoders for content-based image retrieval. In ESANN, 2011.

[15] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E.Howard, W. Hubbard, L.D. Jackel, et al. Handwritten digit recognition with aback-propagation network. In Advances in neural information processing systems,1990.

[16] Y. LeCun, F.J. Huang, and L. Bottou. Learning methodsfor generic object recognition with invariance to pose and lighting. InComputer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004IEEE Computer Society Conference on, volume 2, pages II–97. IEEE, 2004.

[17] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutionalnetworks and applications in vision. In Circuits and Systems (ISCAS),Proceedings of 2010 IEEE International Symposium on, pages 253–256. IEEE, 2010.

[18] H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng.Convolutional deep belief networks for scalable unsupervised learning ofhierarchical representations. In Proceedings of the 26th Annual InternationalConference on Machine Learning, pages 609–616. ACM, 2009.

[19] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka.Metric Learning for Large Scale Image Classification: Generalizing to NewClasses at Near-Zero Cost. In ECCV - European Conference on Computer Vision,Florence, Italy, October 2012.

[20] V. Nair and G. E. Hinton. Rectified linear unitsimprove restricted boltzmann machines. In Proc. 27th InternationalConference on Machine Learning, 2010.

[21] N. Pinto, D.D. Cox, and J.J. DiCarlo. Why is real-worldvisual object recognition hard? PLoS computational biology, 4(1):e27, 2008.