1. 程式人生 > >高併發系統之限流特技:有了它,京東6.18如虎添翼!

高併發系統之限流特技:有了它,京東6.18如虎添翼!

轉載 ------ 2016-06-24 張開濤相關文章

在開發高併發系統時有三把利器用來保護系統:快取、降級和限流。快取的目的是提升系統訪問速度和增大系統能處理的容量,可謂是抗高併發流量的銀彈;而降級是當服務出問題或者影響到核心流程的效能則需要暫時遮蔽掉,待高峰或者問題解決後再開啟;而有些場景並不能用快取和降級來解決,比如稀缺資源(秒殺、搶購)、寫服務(如評論、下單)、頻繁的複雜查詢(評論的最後幾頁),因此需有一種手段來限制這些場景的併發/請求量,即限流。

限流的目的是通過對併發訪問/請求進行限速或者一個時間視窗內的的請求進行限速來保護系統,一旦達到限制速率則可以拒絕服務(定向到錯誤頁或告知資源沒有了)、排隊或等待(比如秒殺、評論、下單)、降級(返回兜底資料或預設資料,如商品詳情頁庫存預設有貨)。

一般開發高併發系統常見的限流有:限制總併發數(比如資料庫連線池、執行緒池)、限制瞬時併發數(如nginx的limit_conn模組,用來限制瞬時併發連線數)、限制時間視窗內的平均速率(如Guava的RateLimiter、nginx的limit_req模組,限制每秒的平均速率);其他還有如限制遠端介面呼叫速率、限制MQ的消費速率。另外還可以根據網路連線數、網路流量、CPU或記憶體負載等來限流。

先有快取這個銀彈,後有限流來應對618、雙十一高併發流量,在處理高併發問題上可以說是如虎添翼不用擔心瞬間流量導致系統掛掉或雪崩,最終做到有損服務而不是不服務;限流需要評估好,不可亂用,否則會正常流量出現一些奇怪的問題而導致使用者抱怨。

在實際應用時也不要太糾結演算法問題,因為一些限流演算法實現是一樣的只是描述不一樣;具體使用哪種限流技術還是要根據實際場景來選擇,不要一味去找最佳模式,白貓黑貓能解決問題的就是好貓。

因在實際工作中遇到過許多人來問如何進行限流,因此本文會詳細介紹各種限流手段。那麼接下來我們從限流演算法、應用級限流、分散式限流、接入層限流來詳細學習下限流技術手段。

一、限流演算法

常見的限流演算法有:令牌桶、漏桶。計數器也可以進行粗暴限流實現。

令牌桶演算法

令牌桶演算法是一個存放固定容量令牌的桶,按照固定速率往桶裡新增令牌。令牌桶演算法的描述如下:

  • 假設限制2r/s,則按照500毫秒的固定速率往桶中新增令牌;

  • 桶中最多存放b個令牌,當桶滿時,新新增的令牌被丟棄或拒絕;

  • 當一個n個位元組大小的資料包到達,將從桶中刪除n個令牌,接著資料包被髮送到網路上;

  • 如果桶中的令牌不足n個,則不會刪除令牌,且該資料包將被限流(要麼丟棄,要麼緩衝區等待)。

漏桶演算法

漏桶作為計量工具(The Leaky Bucket Algorithm as a Meter)時,可以用於流量整形(Traffic Shaping)和流量控制(TrafficPolicing),漏桶演算法的描述如下:

  • 一個固定容量的漏桶,按照常量固定速率流出水滴;

  • 如果桶是空的,則不需流出水滴;

  • 可以以任意速率流入水滴到漏桶;

  • 如果流入水滴超出了桶的容量,則流入的水滴溢位了(被丟棄),而漏桶容量是不變的。

令牌桶和漏桶對比:
  • 令牌桶是按照固定速率往桶中新增令牌,請求是否被處理需要看桶中令牌是否足夠,當令牌數減為零時則拒絕新的請求;

  • 漏桶則是按照常量固定速率流出請求,流入請求速率任意,當流入的請求數累積到漏桶容量時,則新流入的請求被拒絕;

  • 令牌桶限制的是平均流入速率(允許突發請求,只要有令牌就可以處理,支援一次拿3個令牌,4個令牌),並允許一定程度突發流量;

  • 漏桶限制的是常量流出速率(即流出速率是一個固定常量值,比如都是1的速率流出,而不能一次是1,下次又是2),從而平滑突發流入速率;

  • 令牌桶允許一定程度的突發,而漏桶主要目的是平滑流入速率;

  • 兩個演算法實現可以一樣,但是方向是相反的,對於相同的引數得到的限流效果是一樣的。

另外有時候我們還使用計數器來進行限流,主要用來限制總併發數,比如資料庫連線池、執行緒池、秒殺的併發數;只要全域性總請求數或者一定時間段的總請求數設定的閥值則進行限流,是簡單粗暴的總數量限流,而不是平均速率限流。

到此基本的演算法就介紹完了,接下來我們首先看看應用級限流。

二、應用級限流

限流總併發/連線/請求數

對於一個應用系統來說一定會有極限併發/請求數,即總有一個TPS/QPS閥值,如果超了閥值則系統就會不響應使用者請求或響應的非常慢,因此我們最好進行過載保護,防止大量請求湧入擊垮系統。

如果你使用過Tomcat,其Connector 其中一種配置有如下幾個引數:

  • acceptCount:如果Tomcat的執行緒都忙於響應,新來的連線會進入佇列排隊,如果超出排隊大小,則拒絕連線;

  • maxConnections: 瞬時最大連線數,超出的會排隊等待;

  • maxThreads:Tomcat能啟動用來處理請求的最大執行緒數,如果請求處理量一直遠遠大於最大執行緒數則可能會僵死。

詳細的配置請參考官方文件。另外如Mysql(如max_connections)、Redis(如tcp-backlog)都會有類似的限制連線數的配置。

限流總資源數

如果有的資源是稀缺資源(如資料庫連線、執行緒),而且可能有多個系統都會去使用它,那麼需要限制應用;可以使用池化技術來限制總資源數:連線池、執行緒池。比如分配給每個應用的資料庫連線是100,那麼本應用最多可以使用100個資源,超出了可以等待或者拋異常。

限流某個介面的總併發/請求數

如果介面可能會有突發訪問情況,但又擔心訪問量太大造成崩潰,如搶購業務;這個時候就需要限制這個介面的總併發/請求數總請求數了;因為粒度比較細,可以為每個介面都設定相應的閥值。可以使用Java中的AtomicLong進行限流:

適合對業務無損的服務或者需要過載保護的服務進行限流,如搶購業務,超出了大小要麼讓使用者排隊,要麼告訴使用者沒貨了,對使用者來說是可以接受的。而一些開放平臺也會限制使用者呼叫某個介面的試用請求量,也可以用這種計數器方式實現。這種方式也是簡單粗暴的限流,沒有平滑處理,需要根據實際情況選擇使用;

限流某個介面的時間窗請求數

即一個時間視窗內的請求數,如想限制某個介面/服務每秒/每分鐘/每天的請求數/呼叫量。如一些基礎服務會被很多其他系統呼叫,比如商品詳情頁服務會呼叫基礎商品服務呼叫,但是怕因為更新量比較大將基礎服務打掛,這時我們要對每秒/每分鐘的呼叫量進行限速;一種實現方式如下所示:

我們使用Guava的Cache來儲存計數器,過期時間設定為2秒(保證1秒內的計數器是有的),然後我們獲取當前時間戳然後取秒數來作為KEY進行計數統計和限流,這種方式也是簡單粗暴,剛才說的場景夠用了。

平滑限流某個介面的請求數

之前的限流方式都不能很好地應對突發請求,即瞬間請求可能都被允許從而導致一些問題;因此在一些場景中需要對突發請求進行整形,整形為平均速率請求處理(比如5r/s,則每隔200毫秒處理一個請求,平滑了速率)。這個時候有兩種演算法滿足我們的場景:令牌桶和漏桶演算法。Guava框架提供了令牌桶演算法實現,可直接拿來使用。

Guava RateLimiter提供了令牌桶演算法實現:平滑突發限流(SmoothBursty)和平滑預熱限流(SmoothWarmingUp)實現。

SmoothBursty
  1. RateLimiter.create(5) 表示桶容量為5且每秒新增5個令牌,即每隔200毫秒新增一個令牌;

  2. limiter.acquire()表示消費一個令牌,如果當前桶中有足夠令牌則成功(返回值為0),如果桶中沒有令牌則暫停一段時間,比如發令牌間隔是200毫秒,則等待200毫秒後再去消費令牌(如上測試用例返回的為0.198239,差不多等待了200毫秒桶中才有令牌可用),這種實現將突發請求速率平均為了固定請求速率。

再看一個突發示例:

limiter.acquire(5)表示桶的容量為5且每秒新增5個令牌,令牌桶演算法允許一定程度的突發,所以可以一次性消費5個令牌,但接下來的limiter.acquire(1)將等待差不多1秒桶中才能有令牌,且接下來的請求也整形為固定速率了。

同上邊的例子類似,第一秒突發了10個請求,令牌桶演算法也允許了這種突發(允許消費未來的令牌),但接下來的limiter.acquire(1)將等待差不多2秒桶中才能有令牌,且接下來的請求也整形為固定速率了。


接下來再看一個突發的例子:

  1. 建立了一個桶容量為2且每秒新增2個令牌;

  2. 首先呼叫limiter.acquire()消費一個令牌,此時令牌桶可以滿足(返回值為0);

  3. 然後執行緒暫停2秒,接下來的兩個limiter.acquire()都能消費到令牌,第三個limiter.acquire()也同樣消費到了令牌,到第四個時就需要等待500毫秒了。

此處可以看到我們設定的桶容量為2(即允許的突發量),這是因為SmoothBursty中有一個引數:最大突發秒數(maxBurstSeconds)預設值是1s,突發量/桶容量=速率*maxBurstSeconds,所以本示例桶容量/突發量為2,例子中前兩個是消費了之前積攢的突發量,而第三個開始就是正常計算的了。令牌桶演算法允許將一段時間內沒有消費的令牌暫存到令牌桶中,留待未來使用,並允許未來請求的這種突發。

SmoothBursty通過平均速率和最後一次新增令牌的時間計算出下次新增令牌的時間的,另外需要一個桶暫存一段時間內沒有使用的令牌(即可以突發的令牌數)。另外RateLimiter還提供了tryAcquire方法來進行無阻塞或可超時的令牌消費。

因為SmoothBursty允許一定程度的突發,會有人擔心如果允許這種突發,假設突然間來了很大的流量,那麼系統很可能扛不住這種突發。因此需要一種平滑速率的限流工具,從而系統冷啟動後慢慢的趨於平均固定速率(即剛開始速率小一些,然後慢慢趨於我們設定的固定速率)。Guava也提供了SmoothWarmingUp來實現這種需求,其可以認為是漏桶演算法,但是在某些特殊場景又不太一樣。

SmoothWarmingUp建立方式:

permitsPerSecond表示每秒新增的令牌數,warmupPeriod表示在從冷啟動速率過渡到平均速率的時間間隔。

示例如下:

速率是梯形上升速率的,也就是說冷啟動時會以一個比較大的速率慢慢到平均速率;然後趨於平均速率(梯形下降到平均速率)。可以通過調節warmupPeriod引數實現一開始就是平滑固定速率。

到此應用級限流的一些方法就介紹完了。假設將應用部署到多臺機器,應用級限流方式只是單應用內的請求限流,不能進行全侷限流。因此我們需要分散式限流和接入層限流來解決這個問題。

三、分散式限流

分散式限流最關鍵的是要將限流服務做成原子化,而解決方案可以使用redis+lua或者nginx+lua技術進行實現,通過這兩種技術可以實現的高併發和高效能。

首先我們來使用redis+lua實現時間窗內某個介面的請求數限流,實現了該功能後可以改造為限流總併發/請求數和限制總資源數。Lua本身就是一種程式語言,也可以使用它實現複雜的令牌桶或漏桶演算法。

redis+lua實現中的lua指令碼:

如上操作因是在一個lua指令碼中,又因Redis是單執行緒模型,因此是執行緒安全的。如上方式有一個缺點就是當達到限流大小後還是會遞增的,可以改造成如下方式實現:

如下是Java中判斷是否需要限流的程式碼:

因為Redis的限制(Lua中有寫操作不能使用帶隨機性質的讀操作,如TIME)不能在Redis Lua中使用TIME獲取時間戳,因此只好從應用獲取然後傳入,在某些極端情況下(機器時鐘不準的情況下),限流會存在一些小問題。

使用Nginx+Lua實現的Lua指令碼:

實現中我們需要使用lua-resty-lock互斥鎖模組來解決原子性問題(在實際工程中使用時請考慮獲取鎖的超時問題),並使用ngx.shared.DICT共享字典來實現計數器。如果需要限流則返回0,否則返回1。使用時需要先定義兩個共享字典(分別用來存放鎖和計數器資料):

有人會糾結如果應用併發量非常大那麼redis或者nginx是不是能抗得住;不過這個問題要從多方面考慮:你的流量是不是真的有這麼大,是不是可以通過一致性雜湊將分散式限流進行分片,是不是可以當併發量太大降級為應用級限流;對策非常多,可以根據實際情況調節;像在京東使用Redis+Lua來限流搶購流量,一般流量是沒有問題的。

對於分散式限流目前遇到的場景是業務上的限流,而不是流量入口的限流;流量入口限流應該在接入層完成,而接入層筆者一般使用Nginx。

四、接入層限流

接入層通常指請求流量的入口,該層的主要目的有:負載均衡、非法請求過濾、請求聚合、快取、降級、限流、A/B測試、服務質量監控等等,可以參考筆者寫的《使用Nginx+Lua(OpenResty)開發高效能Web應用》。

對於Nginx接入層限流可以使用Nginx自帶了兩個模組:連線數限流模組ngx_http_limit_conn_module和漏桶演算法實現的請求限流模組ngx_http_limit_req_module。還可以使用OpenResty提供的Lua限流模組lua-resty-limit-traffic進行更復雜的限流場景。

limit_conn用來對某個KEY對應的總的網路連線數進行限流,可以按照如IP、域名維度進行限流。limit_req用來對某個KEY對應的請求的平均速率進行限流,並有兩種用法:平滑模式(delay)和允許突發模式(nodelay)。

ngx_http_limit_conn_module

limit_conn是對某個KEY對應的總的網路連線數進行限流。可以按照IP來限制IP維度的總連線數,或者按照服務域名來限制某個域名的總連線數。但是記住不是每一個請求連線都會被計數器統計,只有那些被Nginx處理的且已經讀取了整個請求頭的請求連線才會被計數器統計。

配置示例:

  • limit_conn:要配置存放KEY和計數器的共享記憶體區域和指定KEY的最大連線數;此處指定的最大連線數是1,表示Nginx最多同時併發處理1個連線;

  • limit_conn_zone:用來配置限流KEY、及存放KEY對應資訊的共享記憶體區域大小;此處的KEY是“$binary_remote_addr”其表示IP地址,也可以使用如$server_name作為KEY來限制域名級別的最大連線數;

  • limit_conn_status:配置被限流後返回的狀態碼,預設返回503;

  • limit_conn_log_level:配置記錄被限流後的日誌級別,預設error級別。

limit_conn的主要執行過程如下所示:

1、請求進入後首先判斷當前limit_conn_zone中相應KEY的連線數是否超出了配置的最大連線數;

2.1、如果超過了配置的最大大小,則被限流,返回limit_conn_status定義的錯誤狀態碼;

2.2、否則相應KEY的連線數加1,並註冊請求處理完成的回撥函式;

3、進行請求處理;

4、在結束請求階段會呼叫註冊的回撥函式對相應KEY的連線數減1。

limt_conn可以限流某個KEY的總併發/請求數,KEY可以根據需要變化。

按照IP限制併發連線數配置示例:

首先定義IP維度的限流區域:

接著在要限流的location中新增限流邏輯:

即允許每個IP最大併發連線數為2。

使用AB測試工具進行測試,併發數為5個,總的請求數為5個:

將得到如下access.log輸出:

此處我們把access log格式設定為log_format main  '[$time_local] [$msec] $status';分別是“日期 日期秒/毫秒值 響應狀態碼”。

如果被限流了,則在error.log中會看到類似如下的內容:

按照域名限制併發連線數配置示例:

首先定義域名維度的限流區域:


接著在要限流的location中新增限流邏輯:

即允許每個域名最大併發請求連線數為2;這樣配置可以實現伺服器最大連線數限制。

ngx_http_limit_req_module

limit_req是令牌桶演算法實現,用於對指定KEY對應的請求進行限流,比如按照IP維度限制請求速率。

配置示例:

  • limit_req:配置限流區域、桶容量(突發容量,預設0)、是否延遲模式(預設延遲);

  • limit_req_zone:配置限流KEY、及存放KEY對應資訊的共享記憶體區域大小、固定請求速率;此處指定的KEY是“$binary_remote_addr”表示IP地址;固定請求速率使用rate引數配置,支援10r/s和60r/m,即每秒10個請求和每分鐘60個請求,不過最終都會轉換為每秒的固定請求速率(10r/s為每100毫秒處理一個請求;60r/m,即每1000毫秒處理一個請求)。

  • limit_conn_status:配置被限流後返回的狀態碼,預設返回503;

  • limit_conn_log_level:配置記錄被限流後的日誌級別,預設error級別。

limit_req的主要執行過程如下所示:

1、請求進入後首先判斷最後一次請求時間相對於當前時間(第一次是0)是否需要限流,如果需要限流則執行步驟2,否則執行步驟3;

2.1、如果沒有配置桶容量(burst),則桶容量為0;按照固定速率處理請求;如果請求被限流,則直接返回相應的錯誤碼(預設503);

2.2、如果配置了桶容量(burst>0)且延遲模式(沒有配置nodelay);如果桶滿了,則新進入的請求被限流;如果沒有滿則請求會以固定平均速率被處理(按照固定速率並根據需要延遲處理請求,延遲使用休眠實現);

2.3、如果配置了桶容量(burst>0)且非延遲模式(配置了nodelay);不會按照固定速率處理請求,而是允許突發處理請求;如果桶滿了,則請求被限流,直接返回相應的錯誤碼;

3、如果沒有被限流,則正常處理請求;

4、Nginx會在相應時機進行選擇一些(3個節點)限流KEY進行過期處理,進行記憶體回收。

場景2.1測試

首先定義IP維度的限流區域:

限制為每秒500個請求,固定平均速率為2毫秒一個請求。

接著在要限流的location中新增限流邏輯:

即桶容量為0(burst預設為0),且延遲模式。

使用AB測試工具進行測試,併發數為2個,總的請求數為10個:

將得到如下access.log輸出:

雖然每秒允許500個請求,但是因為桶容量為0,所以流入的請求要麼被處理要麼被限流,無法延遲處理;另外平均速率在2毫秒左右,比如1465381556.410和1465381556.411被處理了;有朋友會說這固定平均速率不是1毫秒嘛,其實這是因為實現演算法沒那麼精準造成的。

如果被限流在error.log中會看到如下內容:

如果被延遲了在error.log(日誌級別要INFO級別)中會看到如下內容:

場景2.2測試

首先定義IP維度的限流區域:

為了方便測試設定速率為每秒2個請求,即固定平均速率是500毫秒一個請求。

接著在要限流的location中新增限流邏輯:

固定平均速率為500毫秒一個請求,通容量為3,如果桶滿了新的請求被限流,否則可以進入桶中排隊並等待(實現延遲模式)。

為了看出限流效果我們寫了一個req.sh指令碼:

首先進行6個併發請求6次URL,然後休眠300毫秒,然後再進行6個併發請求6次URL;中間休眠目的是為了能跨越2秒看到效果,如果看不到如下的效果可以調節休眠時間。

將得到如下access.log輸出:

桶容量為3,即桶中在時間視窗內最多流入3個請求,且按照2r/s的固定速率處理請求(即每隔500毫秒處理一個請求);桶計算時間視窗(1.5秒)=速率(2r/s)/桶容量(3),也就是說在這個時間視窗內桶最多暫存3個請求。因此我們要以當前時間往前推1.5秒和1秒來計算時間視窗內的總請求數;另外因為預設是延遲模式,所以時間窗內的請求要被暫存到桶中,並以固定平均速率處理請求:

  • 第一輪:有4個請求處理成功了,按照漏桶桶容量應該最多3個才對;這是因為計算演算法的問題,第一次計算因沒有參考值,所以第一次計算後,後續的計算才能有參考值,因此第一次成功可以忽略;這個問題影響很小可以忽略;而且按照固定500毫秒的速率處理請求。

  • 第二輪:因為第一輪請求是突發來的,差不多都在1465433203.959時間點,只是因為漏桶將速率進行了平滑變成了固定平均速率(每500毫秒一個請求);而第二輪計算時間應基於1465433203.959;而第二輪突發請求差不多都在1465433205.766時間點,因此計算桶容量的時間視窗應基於1465433203.959和1465433205.766來計算,計算結果為1465433205.766這個時間點漏桶為空了,可以流入桶中3個請求,其他請求被拒絕;又因為第一輪最後一次處理時間是1465433205.453,所以第二輪第一個請求被延遲到了1465433205.950。這裡也要注意固定平均速率只是在配置的速率左右,存在計算精度問題,會有一些偏差。

如果桶容量改為1(burst=1),執行req.sh指令碼可以看到如下輸出:

桶容量為1,按照每1000毫秒一個請求的固定平均速率處理請求。

場景2.3測試

首先定義IP維度的限流區域:

為了方便測試配置為每秒2個請求,固定平均速率是500毫秒一個請求。

接著在要限流的location中新增限流邏輯:

桶容量為3,如果桶滿了直接拒絕新請求,且每秒2最多兩個請求,桶按照固定500毫秒的速率以nodelay模式處理請求。

為了看到限流效果我們寫了一個req.sh指令碼:

將得到類似如下access.log輸出:

桶容量為3(,即桶中在時間視窗內最多流入3個請求,且按照2r/s的固定速率處理請求(即每隔500毫秒處理一個請求);桶計算時間視窗(1.5秒)=速率(2r/s)/桶容量(3),也就是說在這個時間視窗內桶最多暫存3個請求。因此我們要以當前時間往前推1.5秒和1秒來計算時間視窗內的總請求數;另外因為配置了nodelay,是非延遲模式,所以允許時間窗內突發請求的;另外從本示例會看出兩個問題:

  • 第一輪和第七輪:有4個請求處理成功了;這是因為計算演算法的問題,本示例是如果2秒內沒有請求,然後接著突然來了很多請求,第一次計算的結果將是不正確的;這個問題影響很小可以忽略;

  • 第五輪:1.0秒計算出來是3個請求;此處也是因計算精度的問題,也就是說limit_req實現的演算法不是非常精準的,假設此處看成相對於2.75的話,1.0秒內只有1次請求,所以還是允許1次請求的。

如果限流出錯了,可以配置錯誤頁面:

limit_conn_zone/limit_req_zone定義的記憶體不足,則後續的請求將一直被限流,所以需要根據需求設定好相應的記憶體大小。

此處的限流都是單Nginx的,假設我們接入層有多個nginx,此處就存在和應用級限流相同的問題;那如何處理呢?一種解決辦法:建立一個負載均衡層將按照限流KEY進行一致性雜湊演算法將請求雜湊到接入層Nginx上,從而相同KEY的將打到同一臺接入層Nginx上;另一種解決方案就是使用Nginx+Lua(OpenResty)呼叫分散式限流邏輯實現。

lua-resty-limit-traffic

之前介紹的兩個模組使用上比較簡單,指定KEY、指定限流速率等就可以了,如果我們想根據實際情況變化KEY、變化速率、變化桶大小等這種動態特性,使用標準模組就很難去實現了,因此我們需要一種可程式設計來解決我們問題;而OpenResty提供了lua限流模組lua-resty-limit-traffic,通過它可以按照更復雜的業務邏輯進行動態限流處理了。其提供了limit.conn和limit.req實現,演算法與nginx limit_conn和limit_req是一樣的。

此處我們來實現ngx_http_limit_req_module中的【場景2.2測試】,不要忘記下載lua-resty-limit-traffic模組並新增到OpenResty的lualib中。

配置用來存放限流用的共享字典:

以下是實現【場景2.2測試】的限流程式碼limit_req.lua:

即限流邏輯再nginx access階段被訪問,如果不被限流繼續後續流程;如果需要被限流要麼sleep一段時間繼續後續流程,要麼返回相應的狀態碼拒絕請求。

在分散式限流中我們使用了簡單的Nginx+Lua進行分散式限流,有了這個模組也可以使用這個模組來實現分散式限流。

另外在使用Nginx+Lua時也可以獲取ngx.var.connections_active進行過載保護,即如果當前活躍連線數超過閾值進行限流保護。

nginx也提供了limit_rate用來對流量限速,如limit_rate 50k,表示限制下載速度為50k。

到此筆者在工作中涉及的限流用法就介紹完,這些演算法中有些允許突發,有些會整形為平滑,有些計算演算法簡單粗暴;其中令牌桶演算法和漏桶演算法實現上是類似的,只是表述的方向不太一樣,對於業務來說不必刻意去區分它們;因此需要根據實際場景來決定如何限流,最好的演算法不一定是最適用的。

參考資料

  • https://en.wikipedia.org/wiki/Token_bucket

  • https://en.wikipedia.org/wiki/Leaky_bucket

  • http://redis.io/commands/incr

  • http://nginx.org/en/docs/http/ngx_http_limit_req_module.html

  • http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html

  • https://github.com/openresty/lua-resty-limit-traffic

  • http://nginx.org/en/docs/http/ngx_http_core_module.html#limit_rate

作者介紹  張開濤

  • 2014年加入京東,目前在保險業務部做研發工作。

  • 工作之餘喜歡寫技術部落格,有《跟我學 Spring》、《跟我學Spring MVC》、《跟我學Nginx+Lua開發》等系列教程,目前部落格訪問量有800萬+。