第八屆藍橋杯第九題分巧克力
阿新 • • 發佈:2019-02-13
標題: 分巧克力
兒童節那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友們。
小明一共有N塊巧克力,其中第i塊是Hi x Wi的方格組成的長方形。
為了公平起見,小明需要從這 N 塊巧克力中切出K塊巧克力分給小朋友們。切出的巧克力需要滿足:
1. 形狀是正方形,邊長是整數
2. 大小相同
例如一塊6x5的巧克力可以切出6塊2x2的巧克力或者2塊3x3的巧克力。
當然小朋友們都希望得到的巧克力儘可能大,你能幫小Hi計算出最大的邊長是多少麼?
輸入
第一行包含兩個整數N和K。(1 <= N, K <= 100000)
以下N行每行包含兩個整數Hi和Wi。(1 <= Hi, Wi <= 100000)
輸入保證每位小朋友至少能獲得一塊1x1的巧克力。
輸出
輸出切出的正方形巧克力最大可能的邊長。
樣例輸入:
2 10
6 5
5 6
樣例輸出:
2
資源約定:
峰值記憶體消耗(含虛擬機器) < 256M
CPU消耗 < 1000ms
請嚴格按要求輸出,不要畫蛇添足地列印類似:“請您輸入...” 的多餘內容。
注意:
main函式需要返回0;
只使用ANSI C/ANSI C++ 標準;
不要呼叫依賴於編譯環境或作業系統的特殊函式。
所有依賴的函式必須明確地在原始檔中 #include <xxx>
不能通過工程設定而省略常用標頭檔案。
提交程式時,注意選擇所期望的語言型別和編譯器型別。
二分搜尋解決。。
#include<stdio.h> int n,k,h[100010],w[100010]; bool solve(int n) { int res=0,a,b,i; for(i=0;i<n;i++) { a=h[i]/n; b=w[i]/n; res+=a*b; } if(res>=k) return true; return false; } int main() { int i,low,high; while(scanf("%d%d",&n,&k)!=EOF) { low=1; high=10000; for(i=0;i<n;i++) scanf("%d%d",&h[i],&w[i]); while(low<high-1) { int mid=(low+high)/2; if(!solve(mid)) high=mid; else low=mid; } printf("%d\n",low); } return 0; }