1. 程式人生 > >利用python進行折線圖,直方圖和餅圖的繪製

利用python進行折線圖,直方圖和餅圖的繪製

 我用10個國家某年的GDP來繪圖,資料如下:

labels   = ['USA''China''India''Japan''Germany''Russia''Brazil''UK''France''Italy']

quants   = [15094025.011299967.04457784.04440376.03099080.02383402.02293954.02260803.02217900.0,1846950.0]

首先繪製折線圖,程式碼如下:

def draw_line(labels,quants):
    ind = np.linspace(0,9,10)
    fig = plt.figure(1)
    ax  = fig.add_subplot(111)
    ax.plot(ind,quants)
    ax.set_title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})
    ax.set_xticklabels(labels)
    plt.grid(True)
plt.show()

最後如下圖:

clip_image002[4]

再畫柱狀圖,程式碼如下:

def draw_bar(labels,quants):
    width = 0.4
    ind = np.linspace(0.5,9.5,10)
    # make a square figure
    fig = plt.figure(1)
    ax  = fig.add_subplot(111)
    # Bar Plot
    ax.bar(ind-width/2,quants,width,color='green')
    # Set the ticks on x-axis
    ax.set_xticks(ind)
    ax.set_xticklabels(labels)
    # labels
    ax.set_xlabel('Country')
    ax.set_ylabel('GDP (Billion US dollar)')
    # title
    ax.set_title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})
    plt.grid(True)
plt.show()

clip_image004[4]

最後畫餅圖,程式碼如下:

def draw_pie(labels,quants):
    plt.figure(1, figsize=(6,6))
    # For China, make the piece explode a bit
    expl = [0,0.1,0,0,0,0,0,0,0,0]
    # Colors used. Recycle if not enough.
    colors  = ["blue","red","coral","green","yellow","orange"]
    # autopct: format of "percent" string;
    plt.pie(quants, explode=expl, colors=colors, labels=labels, autopct='%1.1f%%',pctdistance=0.8, shadow=True)
    plt.title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})
plt.show()

clip_image006[4]

三、實驗小結

Python的安裝比較簡單,但是numpymatplotlibscipy的安裝並沒有預期的簡單,首先版本得對應安裝的python版本,而且分3264位,資源不容易找,安裝成功後還要裝其他的東西。至於matplitlib的畫圖感覺還是比較方便的,初學python,雖然整體簡潔了很多,但是python的格式的要求過於嚴格,尤其是縮排等,初學者查了好久都檢查不出錯誤但後來就又稀裡糊塗執行成功了,比較抓狂。

附錄:完整程式碼:

# -*- coding: gbk -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
 
def draw_pie(labels,quants):
    # make a square figure
    plt.figure(1, figsize=(6,6))
    # For China, make the piece explode a bit
    expl = [0,0.1,0,0,0,0,0,0,0,0]
    # Colors used. Recycle if not enough.
    colors  = ["blue","red","coral","green","yellow","orange"]
    # Pie Plot
    # autopct: format of "percent" string;
    plt.pie(quants, explode=expl, colors=colors, labels=labels, autopct='%1.1f%%',pctdistance=0.8, shadow=True)
    plt.title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})
    plt.show()
def draw_bar(labels,quants):
    width = 0.4
    ind = np.linspace(0.5,9.5,10)
    # make a square figure
    fig = plt.figure(1)
    ax  = fig.add_subplot(111)
    # Bar Plot
    ax.bar(ind-width/2,quants,width,color='green')
    # Set the ticks on x-axis
    ax.set_xticks(ind)
    ax.set_xticklabels(labels)
    # labels
    ax.set_xlabel('Country')
    ax.set_ylabel('GDP (Billion US dollar)')
    # title
    ax.set_title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})
    plt.grid(True)
    plt.show()
def draw_line(labels,quants):
    ind = np.linspace(0,9,10)
    fig = plt.figure(1)
    ax  = fig.add_subplot(111)
    ax.plot(ind,quants)
    ax.set_title('Top 10 GDP Countries', bbox={'facecolor':'0.8', 'pad':5})
    ax.set_xticklabels(labels)
    plt.grid(True)
    plt.show()
# quants: GDP
# labels: country name
labels   = ['USA', 'China', 'India', 'Japan', 'Germany', 'Russia', 'Brazil', 'UK', 'France', 'Italy']
quants   = [15094025.0, 11299967.0, 4457784.0, 4440376.0, 3099080.0, 2383402.0, 2293954.0, 2260803.0, 2217900.0,1846950.0]
draw_pie(labels,quants)
#draw_bar(labels,quants)
#draw_line(labels,quants)