hdu3501(尤拉函式)
阿新 • • 發佈:2019-02-16
Calculation 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5342 Accepted Submission(s): 2199
Problem Description
Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common positive divisors except 1.
Input
For each test case, there is a line containing a positive integer N(1 ≤ N ≤ 1000000000). A line containing a single 0 follows the last test case.
Output
For each test case, you should print the sum module 1000000007 in a line.
Sample Input
3
4
0
Sample Output
0
2
題意:求解1~n與n不互質的數的和。
解析:典型的尤拉函式應用。
利用尤拉函式即可求解,1~n比n小且與n互素的數的總和為 * sum(n) = n * phi(n) / 2;那麼可以先求出1~n-1的總和,然後 * 減去sum(n)即可。
#include<bits/stdc++.h> using namespace std; #define e exp(1) #define pi acos(-1) #define mod 1000000007 #define inf 0x3f3f3f3f #define ll long long #define ull unsigned long long #define mem(a,b) memset(a,b,sizeof(a)) int gcd(int a,int b){return b?gcd(b,a%b):a;} ull euler(ull n) { ull res=n,a=n; for(ull i=2;i*i<=a;i++) { if(a%i==0) { res=res/i*(i-1); while(a%i==0) a/=i; } } if(a>1) res=res/a*(a-1); return res; } int main() { ull n; while(~scanf("%llu",&n),n) { ull sum=n*(1+n)/2-n,ans; ans=sum-euler(n)*n/2; printf("%llu\n",ans%mod); } return 0; }