Flume、Kafka與Storm實現日誌處理
阿新 • • 發佈:2019-02-17
1. ZooKeeper
2. Kafka
2.1 解壓安裝
# 確保scala已經安裝好,本文安裝的是2.11.7
tar -xf kafka_2.11-0.9.0.1.tgz
cd kafka_2.11-0.9.0.1
mkdir logs
vim ~/.bash_profile
export KAFKA_HOME=/home/zkpk/kafka_2.11-0.9.0.1
export PATH=$PATH:$KAFKA_HOME/bin
source ~/.bash_profile
2.2 配置
2.2.1 server.properties
只設置了以下4項,其他使用預設值
# 當前機器在叢集中的唯一標識,和zookeeper的myid性質一樣
broker.id=0
host.name=hsm01
# 訊息存放的目錄,這個目錄可以配置為“,”逗號分割的表示式,
# 上面的num.io.threads要大於這個目錄的個數這個目錄,如果配置多個目錄,
# 新建立的topic他把訊息持久化的地方是,當前以逗號分割的目錄中,
# 那個分割槽數最少就放那一個
log.dirs=/home/zkpk/kafka_2.11-0.9.0.1/logs
# 配置自定義的ZooKeeper
zookeeper.connect=hsm01:2181,hss01:2181,hss02:2181 /kafka
2.2.2 複製到其他節點
scp -r ~/kafka_2.11-0.9.0.1/ hss01:~/
scp -r ~/kafka_2.11-0.9.0.1/ hss02:~/
# 修改broker.id與host.name
# 配置環境變數
2.3 啟動
kafka-server-start.sh -daemon $KAFKA_HOME/config/server.properties
2.4 測試
# 建立Topic
kafka-topics.sh --create --zookeeper hsm01:2181/kafka --replication-factor 1 - -partitions 1 --topic shuaige
# 建立一個broker,釋出者
kafka-console-producer.sh --broker-list hsm01:9092 --topic shuaige
# 建立一個訂閱者
kafka-console-consumer.sh --zookeeper hsm01:2181/kafka --topic shuaige --from-beginning
# 檢視主題
kafka-topics.sh --zookeeper hsm01:2181/kafka --list
# 檢視主題詳情
kafka-topics.sh --describe --zookeeper localhost:2181 --topic test
# 刪除主題
kafka-topics.sh --zookeeper localhost:2181 --delete --topic test
2.5 參考
3. Flume
3.1 解壓安裝
# /home/zkpk目錄
tar -xf apache-flume-1.6.0-bin.tar.gz
mv apache-flume-1.6.0-bin/ flume-1.6.0
# 配置環境變數
vim .bash_profile
export FLUME_HOME=/home/zkpk/flume-1.6.0
export PATH=$PATH:$FLUME_HOME/bin
3.2 配置(與kafka整合)
kafkasink只有在1.6.0以上的flume版本才有。
3.2.1 flume-env.sh
JAVA_HOME=/opt/jdk1.8.0_45
3.2.2 kafka-sogolog.properties
# configure agent
a1.sources = f1
a1.channels = c1
a1.sinks = k1
# configure the source
a1.sources.f1.type = netcat
a1.sources.f1.bind = localhost
a1.sources.f1.port = 3333
# configure the sink (kafka)
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.topic = sogolog
a1.sinks.k1.brokerList = hsm01:9092,hss01:9092/kafka
a1.sinks.k1.requiredAcks = 0
a1.sinks.k1.batchSize = 20
# configure the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# bind the source and sink to the channel
a1.sources.f1.channels = c1
a1.sinks.k1.channel = c1
3.3 啟動
啟動ZooKeeper服務
$ZOOKEEPER_HOME/bin/zkServer.sh start
啟動kafka
# 啟動服務
kafka-server-start.sh -daemon $KAFKA_HOME/config/server.properties
# 建立Topic
kafka-topics.sh --create --zookeeper hsm01:2181/kafka --replication-factor 1 --partitions 1 --topic sogolog
# 建立一個訂閱者
kafka-console-consumer.sh --zookeeper hsm01:2181/kafka --topic sogolog --from-beginning
啟動flume
flume-ng agent -n a1 -c conf -f conf/kafka-sogolog.properties -Dflume.root.logger=DEBUG,console
注:命令中的a1表示配置檔案中的Agent的Name,如配置檔案中的a1。flume-conf.properties表示配置檔案所在配置,需填寫準確的配置檔案路徑。
3.4 測試
telnet輸入
flume採集資料
kafka接收資料
3.5 參考
4. Storm
4.1 安裝
4.2 簡單測試
4.2.1 pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>bigdata-demo</artifactId>
<groupId>com.zw</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>storm-demo</artifactId>
<packaging>jar</packaging>
<name>storm-demo</name>
<url>http://maven.apache.org</url>
<repositories>
<repository>
<id>github-releases</id>
<url>http://oss.sonatype.org/content/repositories/github-releases</url>
</repository>
<repository>
<id>clojars.org</id>
<url>http://clojars.org/repo</url>
</repository>
<repository>
<id>twitter4j</id>
<url>http://twitter4j.org/maven2</url>
</repository>
</repositories>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<storm.version>0.9.7</storm.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>${storm.version}</version>
<!--
java直接執行時,修改為compile,
maven執行時,使用provided
-->
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.googlecode.json-simple</groupId>
<artifactId>json-simple</artifactId>
<version>1.1.1</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass></mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>com.theoryinpractise</groupId>
<artifactId>clojure-maven-plugin</artifactId>
<version>1.3.8</version>
<extensions>true</extensions>
<configuration>
<sourceDirectories>
<sourceDirectory>src/clj</sourceDirectory>
</sourceDirectories>
</configuration>
<executions>
<execution>
<id>compile</id>
<phase>compile</phase>
<goals>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>test</id>
<phase>test</phase>
<goals>
<goal>test</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.5.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>${project.build.sourceEncoding}</encoding>
</configuration>
</plugin>
</plugins>
</build>
</project>
注意storm-core依賴的scope
4.2.2 HelloWorldSpout.java
package com.zw.storm.helloworld;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;
import java.util.Map;
import java.util.Random;
/**
* Spout起到和外界溝通的作用,他可以從一個數據庫中按照某種規則取資料,也可以從分散式佇列中取任務
* <p>
* 生成一個隨機數生成的Tuple
* </p>
*
* Created by zhangws on 16/10/3.
*/
public class HelloWorldSpout extends BaseRichSpout {
// 用來發射資料的工具類
private SpoutOutputCollector collector;
private int referenceRandom;
private static final int MAX_RANDOM = 10;
public HelloWorldSpout() {
final Random rand = new Random();
referenceRandom = rand.nextInt(MAX_RANDOM);
}
/**
* 定義欄位id,該id在簡單模式下沒有用處,但在按照欄位分組的模式下有很大的用處。
* <p>
* 該declarer變數有很大作用,我們還可以呼叫declarer.declareStream();
* 來定義stramId,該id可以用來定義更加複雜的流拓撲結構
* </p>
* @param outputFieldsDeclarer
*/
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("sentence"));
}
/**
* 初始化collector
*
* @param map
* @param topologyContext
* @param spoutOutputCollector
*/
@Override
public void open(Map map, TopologyContext topologyContext,
SpoutOutputCollector spoutOutputCollector) {
this.collector = spoutOutputCollector;
}
/**
* 每呼叫一次就可以向storm叢集中發射一條資料(一個tuple元組),該方法會被不停的呼叫
*/
@Override
public void nextTuple() {
Utils.sleep(100);
final Random rand = new Random();
int instanceRandom = rand.nextInt(MAX_RANDOM);
if (instanceRandom == referenceRandom) {
collector.emit(new Values("Hello World"));
} else {
collector.emit(new Values("Other Random Word"));
}
}
}
4.2.3 HelloWorldBolt.java
package com.zw.storm.helloworld;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Tuple;
/**
* 接收噴發節點(Spout)傳送的資料進行簡單的處理後,發射出去。
* <p>
* 用於讀取已產生的Tuple並實現必要的統計邏輯
* </p>
*
* Created by zhangws on 16/10/4.
*/
public class HelloWorldBolt extends BaseBasicBolt {
private int myCount;
@Override
public void execute(Tuple tuple, BasicOutputCollector collector) {
String test = tuple.getStringByField("sentence");
if ("Hello World".equals(test)) {
myCount++;
System.out.println("==========================: " + myCount);
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
}
}
4.2.4 HelloWorldTopology.java
package com.zw.storm.helloworld;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.utils.Utils;
/**
* mvn compile exec:java -Dexec.classpathScope=compile -Dexec.mainClass=com.zw.storm.helloworld.HelloWorldTopology
* Created by zhangws on 16/10/4.
*/
public class HelloWorldTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
// 設定噴發節點並分配併發數,該併發數將會控制該物件在叢集中的執行緒數。
builder.setSpout("randomHelloWorld", new HelloWorldSpout(), 1);
// 設定資料處理節點並分配併發數。指定該節點接收噴發節點的策略為隨機方式。
builder.setBolt("HelloWorldBolt", new HelloWorldBolt(), 2)
.shuffleGrouping("randomHelloWorld");
Config config = new Config();
config.setDebug(true);
if (args != null && args.length > 0) {
config.setNumWorkers(1);
StormSubmitter.submitTopology(args[0], config, builder.createTopology());
} else {
// 這裡是本地模式下執行的啟動程式碼。
config.setMaxTaskParallelism(1);
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("test", config, builder.createTopology());
Utils.sleep(10000);
cluster.killTopology("test");
cluster.shutdown();
}
}
}
4.2.5 執行
# maven
mvn compile exec:java -Dexec.classpathScope=compile -Dexec.mainClass=com.zw.storm.helloworld.HelloWorldTopology
# java直接執行
修改storm-core依賴的scope為compile
結果
...
34568 [Thread-15-HelloWorldBolt] INFO backtype.storm.daemon.executor - Processing received message source: randomHelloWorld:3, stream: default, id: {}, [Other Random Word]
34671 [Thread-11-randomHelloWorld] INFO backtype.storm.daemon.task - Emitting: randomHelloWorld default [Hello World]
34671 [Thread-15-HelloWorldBolt] INFO backtype.storm.daemon.executor - Processing received message source: randomHelloWorld:3, stream: default, id: {}, [Hello World]
==========================: 5
34776 [Thread-11-randomHelloWorld] INFO backtype.storm.daemon.task - Emitting: randomHelloWorld default [Other Random Word]
34776 [Thread-15-HelloWorldBolt] INFO backtype.storm.daemon.executor - Processing received message source: randomHelloWorld:3, stream: default, id: {}, [Other Random Word]
34880 [Thread-11-randomHelloWorld] INFO backtype.storm.daemon.task - Emitting: randomHelloWorld default [Other Random Word]
...
4.3 與Kafka整合
4.3.1 pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>bigdata-demo</artifactId>
<groupId>com.zw</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>kafka2storm</artifactId>
<packaging>jar</packaging>
<name>kafka2storm</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<storm.version>0.9.7</storm.version>
<kafka.version>0.9.0.1</kafka.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>${storm.version}</version>
<!--
java直接執行時,修改為 compile,
maven執行時,使用 provided
-->
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka</artifactId>
<version>${storm.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>${kafka.version}</version>
<exclusions>
<exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
4.3.2 MessageScheme.java
package com.zw.kafka.storm;
import backtype.storm.spout.Scheme;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import java.io.UnsupportedEncodingException;
import java.util.List;
/**
* 對kafka出來的資料轉換成字串
* <p>
* KafkaSpout是Storm中自帶的Spout,
* 使用KafkaSpout時需要子集實現Scheme介面,它主要負責從訊息流中解析出需要的資料
* </p>
*
* Created by zhangws on 16/10/2.
*/
public class MessageScheme implements Scheme {
public List<Object> deserialize(byte[] bytes) {
try {
String msg = new String(bytes, "UTF-8");
return new Values(msg);
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
return null;
}
public Fields getOutputFields() {
return new Fields("msg");
}
}
4.3.3 SequenceBolt.java
package com.zw.kafka.storm;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
import java.io.DataOutputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
/**
* 把輸出儲存到一個檔案中
* <p>
* 把輸出的訊息放到檔案kafkastorm.out中
* </p>
*
* Created by zhangws on 16/10/2.
*/
public class SequenceBolt extends BaseBasicBolt {
/**
* Process the input tuple and optionally emit new tuples based on the input tuple.
* <p>
* All acking is managed for you. Throw a FailedException if you want to fail the tuple.
*
* @param input
* @param collector
*/
public void execute(Tuple input, BasicOutputCollector collector) {
String word = (String) input.getValue(0);
System.out.println("==============" + word);
//寫檔案
try {
DataOutputStream out_file = new DataOutputStream(new FileOutputStream("/home/zkpk/kafkastorm.out"));
out_file.writeUTF(word);
out_file.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
collector.emit(new Values(word));
}
/**
* Declare the output schema for all the streams of this topology.
*
* @param declarer this is used to declare output stream ids, output fields, and whether or not each output stream is a direct stream
*/
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("message"));
}
}
4.3.4 KafkaTopology.java
package com.zw.kafka.storm;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.utils.Utils;
import storm.kafka.BrokerHosts;
import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.ZkHosts;
import storm.kafka.bolt.KafkaBolt;
import java.util.HashMap;
import java.util.Map;
/**
* 配置kafka提交topology到storm的程式碼
* <p>
* topic1的含義kafka接收生產者過來的資料所需要的topic;
* topic2是KafkaBolt也就是storm中的bolt生成的topic,當然這裡topic2這行配置可以省略,
* 是沒有任何問題的,類似於一箇中轉的東西
* </p>
* Created by zhangws on 16/10/2.
*/
public class KafkaTopology {
private static final String BROKER_ZK_LIST = "hsm01:2181,hss01:2181,hss02:2181";
private static final String ZK_PATH = "/kafka/brokers";
public static void main(String[] args) throws Exception {
// 配置Zookeeper地址
BrokerHosts brokerHosts = new ZkHosts(BROKER_ZK_LIST, ZK_PATH);
// 配置Kafka訂閱的Topic,以及zookeeper中資料節點目錄和名字
SpoutConfig spoutConfig = new SpoutConfig(brokerHosts, "sogolog", "/kafka", "kafka");
// 配置KafkaBolt中的kafka.broker.properties
Config conf = new Config();
Map<String, String> map = new HashMap<String, String>();
// 配置Kafka broker地址
map.put("metadata.broker.list", "hsm01:9092");
// serializer.class為訊息的序列化類
map.put("serializer.class", "kafka.serializer.StringEncoder");
conf.put("kafka.broker.properties", map);
// 配置KafkaBolt生成的topic
conf.put("topic", "topic2");
spoutConfig.scheme = new SchemeAsMultiScheme(new MessageScheme());
// spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("kafka-spout", new KafkaSpout(spoutConfig), 1);
builder.setBolt("kafka-bolt", new SequenceBolt()).shuffleGrouping("kafka-spout");
builder.setBolt("kafka-bolt2", new KafkaBolt<String, Integer>()).shuffleGrouping("kafka-bolt");
String name = KafkaTopology.class.getSimpleName();
if (args != null && args.length > 0) {
// Nimbus host name passed from command line
conf.put(Config.NIMBUS_HOST, args[