1. 程式人生 > >分散式ID生成器 | 架構師之路

分散式ID生成器 | 架構師之路

一、需求緣起

幾乎所有的業務系統,都有生成一個唯一記錄標識的需求,例如:

  • 訊息標識:message-id

  • 訂單標識:order-id

  • 帖子標識:tiezi-id

這個記錄標識往往就是資料庫中的主鍵,資料庫上會建立聚集索引(cluster index),即在物理儲存上以這個欄位排序。

這個記錄標識上的查詢,往往又有分頁或者排序的業務需求,例如:

  • 拉取最新的一頁訊息

    select message-id/ order by time/ limit 100

  • 拉取最新的一頁訂單

    select order-id/ order by time/ limit 100

  • 拉取最新的一頁帖子

    select tiezi-id/ order by time/ limit 100

所以往往要有一個time欄位,並且在time欄位上建立普通索引(non-cluster index)。

普通索引儲存的是實際記錄的指標,其訪問效率會比聚集索引慢,如果記錄標識在生成時能夠基本按照時間有序,則可以省去這個time欄位的索引查詢:

select message-id/ (order by message-id)/limit 100

強調,能這麼做的前提是,message-id的生成基本是趨勢時間遞增的

這就引出了記錄標識生成(也就是上文提到的三個XXX-id)的兩大核心需求:

  • 全域性唯一

  • 趨勢有序

這也是本文要討論的核心問題:如何高效生成趨勢有序的全域性唯一ID。

二、常見方法、不足與優化

方法一:使用資料庫的 auto_increment 來生成全域性唯一遞增ID

優點:

  • 簡單,使用資料庫已有的功能

  • 能夠保證唯一性

  • 能夠保證遞增性

  • 步長固定

缺點:

  • 可用性難以保證:資料庫常見架構是一主多從+讀寫分離,生成自增ID是寫請求,主庫掛了就玩不轉了

  • 擴充套件性差,效能有上限:因為寫入是單點,資料庫主庫的寫效能決定ID的生成效能上限,並且難以擴充套件

改進方法:

  • 冗餘主庫,避免寫入單點

  • 資料水平切分,保證各主庫生成的ID不重複


如上圖所述,由1個寫庫變成3個寫庫,每個寫庫設定不同的auto_increment初始值,以及相同的增長步長,以保證每個資料庫生成的ID是不同的(上圖中庫0生成0,3,6,9…,庫1生成1,4,7,10,庫2生成2,5,8,11…)

改進後的架構保證了可用性,但缺點是:

  • 喪失了ID生成的“絕對遞增性”:先訪問庫0生成0,3,再訪問庫1生成1,可能導致在非常短的時間內,ID生成不是絕對遞增的(這個問題不大,目標是趨勢遞增,不是絕對遞增)

  • 資料庫的寫壓力依然很大,每次生成ID都要訪問資料庫

為了解決上述兩個問題,引出了第二個常見的方案。

方法二:單點批量ID生成服務

分散式系統之所以難,很重要的原因之一是“沒有一個全域性時鐘,難以保證絕對的時序”,要想保證絕對的時序,還是隻能使用單點服務,用本地時鐘保證“絕對時序”。

資料庫寫壓力大,是因為每次生成ID都訪問了資料庫,可以使用批量的方式降低資料庫寫壓力。


如上圖所述,資料庫使用雙master保證可用性,資料庫中只儲存當前ID的最大值,例如0。

ID生成服務假設每次批量拉取6個ID,服務訪問資料庫,將當前ID的最大值修改為5,這樣應用訪問ID生成服務索要ID,ID生成服務不需要每次訪問資料庫,就能依次派發0,1,2,3,4,5這些ID了。

當ID發完後,再將ID的最大值修改為11,就能再次派發6,7,8,9,10,11這些ID了,於是資料庫的壓力就降低到原來的1/6。

優點

  • 保證了ID生成的絕對遞增有序

  • 大大的降低了資料庫的壓力,ID生成可以做到每秒生成幾萬幾十萬個

缺點

  • 服務仍然是單點

  • 如果服務掛了,服務重啟起來之後,繼續生成ID可能會不連續,中間出現空洞(服務記憶體是儲存著0,1,2,3,4,5,資料庫中max-id是5,分配到3時,服務重啟了,下次會從6開始分配,4和5就成了空洞,不過這個問題也不大)

  • 雖然每秒可以生成幾萬幾十萬個ID,但畢竟還是有效能上限,無法進行水平擴充套件

改進方法

單點服務的常用高可用優化方案是“備用服務”,也叫“影子服務”,所以我們能用以下方法優化上述缺點(1):


如上圖,對外提供的服務是主服務,有一個影子服務時刻處於備用狀態,當主服務掛了的時候影子服務頂上。

這個切換的過程對呼叫方是透明的,可以自動完成,常用的技術是vip+keepalived,具體就不在這裡展開。

另外,ID-gen-service也可以實施水平擴充套件,以解決上述缺點(3),但會引發一致性問題,具體解決方案詳見《淺談CAS在分散式ID生成方案上的應用》。

方法三:uuid/guid

不管是通過資料庫,還是通過服務來生成ID,業務方Application都需要進行一次遠端呼叫,比較耗時。

有沒有一種本地生成ID的方法,即高效能,又時延低呢?

uuid是一種常見的方案:

string ID =GenUUID();

優點

  • 本地生成ID,不需要進行遠端呼叫,時延低

  • 擴充套件性好,基本可以認為沒有效能上限

缺點

  • 無法保證趨勢遞增

  • uuid過長,往往用字串表示,作為主鍵建立索引查詢效率低,常見優化方案為“轉化為兩個uint64整數儲存”或者“折半儲存”(折半後不能保證唯一性)

方法四:取當前毫秒數

uuid是一個本地演算法,生成效能高,但無法保證趨勢遞增,且作為字串ID檢索效率低,有沒有一種能保證遞增的本地演算法呢?

取當前毫秒數是一種常見方案:

uint64 ID = GenTimeMS();

優點

  • 本地生成ID,不需要進行遠端呼叫,時延低

  • 生成的ID趨勢遞增

  • 生成的ID是整數,建立索引後查詢效率高

缺點

  • 如果併發量超過1000,會生成重複的ID

這個缺點要了命了,不能保證ID的唯一性。當然,使用微秒可以降低衝突概率,但每秒最多隻能生成1000000個ID,再多的話就一定會衝突了,所以使用微秒並不從根本上解決問題。

方法五:類snowflake演算法

snowflake是twitter開源的分散式ID生成演算法,其核心思想為,一個long型的ID:

  • 41bit作為毫秒數

  • 10bit作為機器編號

  • 12bit作為毫秒內序列號

演算法單機每秒內理論上最多可以生成1000*(2^12),也就是400W的ID,完全能滿足業務的需求。

借鑑snowflake的思想,結合各公司的業務邏輯和併發量,可以實現自己的分散式ID生成演算法

舉例,假設某公司ID生成器服務的需求如下:

  • 單機高峰併發量小於1W,預計未來5年單機高峰併發量小於10W

  • 有2個機房,預計未來5年機房數量小於4個

  • 每個機房機器數小於100臺

  • 目前有5個業務線有ID生成需求,預計未來業務線數量小於10個

分析過程如下:

  • 高位取從2017年1月1日到現在的毫秒數(假設系統ID生成器服務在這個時間之後上線),假設系統至少執行10年,那至少需要10年*365天*24小時*3600秒*1000毫秒=320*10^9,差不多預留39bit給毫秒數

  • 每秒的單機高峰併發量小於10W,即平均每毫秒的單機高峰併發量小於100,差不多預留7bit給每毫秒內序列號

  • 5年內機房數小於4個,預留2bit給機房標識

  • 每個機房小於100臺機器,預留7bit給每個機房內的伺服器標識

  • 業務線小於10個,預留4bit給業務線標識

這樣設計的64bit標識,可以保證:

  • 每個業務線、每個機房、每個機器生成的ID都是不同的

  • 同一個機器,每個毫秒內生成的ID都是不同的

  • 同一個機器,同一個毫秒內,以序列號區區分保證生成的ID是不同的

  • 將毫秒數放在最高位,保證生成的ID是趨勢遞增的

缺點

  • 由於“沒有一個全域性時鐘”,每臺伺服器分配的ID是絕對遞增的,但從全域性看,生成的ID只是趨勢遞增的(有些伺服器的時間早,有些伺服器的時間晚)

思路比方案重要,順手幫轉喲。

相關推薦: