Kaggle比賽——Digit Recognizer——Part 1(Pytorch 資料集的建立)
阿新 • • 發佈:2019-02-19
首先從Kaggle官網下載資料集https://www.kaggle.com/c/digit-recognizer/data裡面包含三個CSV文件。train.csv是帶標籤的資料,用於訓練和調參,test.csv是無標籤的資料,在提交測試文件的時候才需要用到。
這裡,我先把train裡面的資料又隨機劃分為兩個表,一個用於訓練一個用於交叉驗證,程式碼很簡單,主要是pandas的一些簡單功能。
#use torch.utils.data.Dataset to build my dataset from train.csv and test.csv import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import torch from torch.utils.data import DataLoader from torch import nn from torch.autograd import Variable def train_val_split(train = 'train.csv',train_flie='train_set.csv',val_file='val_set.csv'): #training set "train.csv" was downloaded from kaggle.com train_data = pd.read_csv(train) #training datas contains Feature and Label. #divide training datas into training set and validation set train_set, val_set = train_test_split(train_data, test_size = 0.2) #wirte csv files train_set.to_csv(train_flie,index = False ) val_set.to_csv(val_file,index = False ) print('train_data.shape:',train_data.shape) print('train_set.shape:',train_set.shape) print('val_set.shape:',val_set.shape) train_val_split('train.csv','train_set.csv','val_set.csv')
執行結果為:
(33600, 785)
(42000, 785)
(8400, 785)
這樣,訓練資料和交叉驗證的資料就分別存在兩個表裡面了。
下一步,我們需要重寫Pytorch的資料集類,構建我們的資料集。
#image preprocessing to Gaussian distribution from -1 to 1 def data_tf(x): x = np.array(x, dtype='float32') / 255 x = (x - 0.5) / 0.5 # 標準化 x = torch.from_numpy(x) return x #define the class of my MNIST dataset class MyMNIST(torch.utils.data.Dataset): #建立自己的類:MyMNIST,這個類是繼承的torch.utils.data.Dataset def __init__(self, datatxt, train=True, transform = data_tf, target_transform=None): #初始化一些需要傳入的引數 self.data = pd.read_csv(datatxt) self.transform = transform self.train = train if self.train: self.X = self.data.iloc[:,1:] self.X = np.array(self.X) self.y = self.data.iloc[:,0] self.y = np.array(self.y) else : self.X = self.data self.X = np.array(self.X) def __getitem__(self, index): #這個方法是必須要有的,用於按照索引讀取每個元素的具體內容 im = torch.tensor(self.X[index], dtype = torch.float) if self.transform is not None: im = self.transform(im) if self.train: label = torch.tensor(self.y[index], dtype = torch.long ) return im, label else: return im def __len__(self): #return the length of batch return len(self.data) #Build trainset validset and testset from csv and perform data preprocessing X_train = MyMNIST(datatxt = 'train_set.csv',train=True, transform = data_tf) X_val = MyMNIST(datatxt= 'val_set.csv',train=True, transform = data_tf) X_test = MyMNIST(datatxt = 'test.csv',train=False, transform = data_tf) #iterator of our dataset train_data = DataLoader(X_train, batch_size=64, shuffle=True) val_data = DataLoader(X_val, batch_size=64, shuffle=False) test_data = DataLoader(X_test, batch_size=1000, shuffle=False)
以上是構建資料集的全部程式碼。
下一步就可以構建網路結構。