GYM 101673 A - Abstract Art 多個一般多邊形面積並
阿新 • • 發佈:2019-02-26
size ros pre bsp span \n fine yar tip
A - Abstract Art
#include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ull unsigned long long usingnamespace std; const int N = 1e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-8; const double PI = acos(-1); struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) { } }; typedef Point Vector;int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } Point operator + (Vector A, Vector B) {return Point(A.x + B.x, A.y + B.y);} Point operator - (Vector A, Vector B) {return Point(A.x - B.x, A.y - B.y);} Point operator * (Vector A, double p) {return Point(A.x * p, A.y * p);} Pointoperator / (Vector A, double p) {return Point(A.x / p, A.y / p);} bool operator < (const Vector &A, const Vector &B) {return A.y < B.y || (A.y == B.y && A.x < B.x);} bool operator == (const Vector &A, const Point &B) {return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.y) == 0;} double Dot(Vector A, Vector B) {return A.x * B.x + A.y * B.y;} double Length(Vector A) {return sqrt(Dot(A, A));} double Angle(Vector A, Vector B) {return acos(Dot(A, B) / Length(A) / Length(B));} double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;} double Area2(Point A, Point B, Point C) {return Cross(B - A, C - A);} double PolygonArea(vector<Point>& p) { int n = p.size(); double area = 0; for(int i = 1; i < n - 1; i++) area += Cross(p[i]-p[0], p[i+1]-p[0]); return fabs(area / 2); } double Seg(Point O, Point A, Point B){ if(dcmp(B.x - A.x) == 0) return (O.y - A.y) / (B.y - A.y); return (O.x - A.x) / (B.x - A.x); } double MultiPolyArea(vector<Point>* p, int n) { double res=0; vector<pair<double, int>> s; for(int i = 0; i < n; i++) { int sz = p[i].size(); for(int j = 0; j < sz; j++){ s.clear(); s.push_back(mk(0, 0)); s.push_back(mk(1, 0)); Point a = p[i][j], b = p[i][(j+1)%sz]; for(int k = 0; k < n; k++){ if(i != k){ int sz2 = p[k].size(); for(int z = 0; z < sz2; z++){ Point c = p[k][z], d = p[k][(z+1)%sz2]; int c1 = dcmp(Cross(b-a, c-a)); int c2 = dcmp(Cross(b-a, d-a)); if(c1 == 0 && c2 == 0) { if(dcmp(Cross(b-a, d-c))) { s.push_back(mk(Seg(c, a, b), 1)); s.push_back(mk(Seg(c, a, b), -1)); } } else { double s1 = Cross(d-c, a-c), s2 = Cross(d-c, b-c); if(c1 >= 0 && c2 < 0) s.push_back(mk(s1/(s1-s2), 1)); else if(c1 < 0 && c2 >= 0) s.push_back(mk(s1/(s1-s2), -1)); } } } } sort(s.begin(), s.end()); double pre = min(max(s[0].fi, 0.0), 1.0), now, sum=0; int cov = s[0].se; for(int j = 1; j < s.size(); j++) { now = min(max(s[j].fi, 0.0), 1.0); if(!cov) sum += now - pre; cov += s[j].second; pre = now; } res += Cross(a, b) * sum; } } return fabs(res / 2); } int n, m; vector<Point> poly[110]; int main() { scanf("%d", &n); for(int i = 0; i < n; i++) { scanf("%d", &m); poly[i].resize(m); for(int j = 0; j < m; j++) { scanf("%lf%lf", &poly[i][j].x, &poly[i][j].y); } } double ans1 = 0, ans2 = MultiPolyArea(poly, n); for(int i = 0; i < n; i++) ans1 += PolygonArea(poly[i]); printf("%.12f %.12f\n", ans1, ans2); return 0; } /* */
GYM 101673 A - Abstract Art 多個一般多邊形面積並